Evaluation of organic waste from marketplaces to produce bacterial enzymes
PDF (Español (España))

Supplementary Files

Información suplementaria (Español (España))

How to Cite

Sánchez-Castelblanco, E. M., & Heredia-Martín, J. P. . (2022). Evaluation of organic waste from marketplaces to produce bacterial enzymes. Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 46(180), 675–684. https://doi.org/10.18257/raccefyn.1652

Downloads

Download data is not yet available.

Métricas Alternativas


Dimensions

Abstract

Marketplaces in urban centers generate agricultural wastes that can be used as low-cost substrates for the production of microbial enzymes. Here we evaluated the physicochemical and microbiological composition of organic waste generated in marketplaces to produce bacterial enzymes. The residues were collected in a marketplace in Bogotá and then classified into six different types from R1 to R6. Their content of humidity, nitrogen, proteins, total organic carbon, reducing sugars, fats and oils, starch, pectin, hemicellulose, lignin, and cellulose were quantified. The microbiological analysis determined the presence of proteolytic, lipolytic, amylolytic, cellulolytic, and ligninolytic bacteria. We isolated 133 morphotypes, 55 of which showed enzymatic activity, and then selected 17 ligninolytic, 14 proteolytic, 11 cellulolytic, nine lipolytic, and four amylolytic strains. The tuber residues presented the highest starch content (41.9 ± 1.18%). The corn cob leaves, legume seed pods, and vegetable residues presented a percentage of cellulose between 33.78 ± 0.91% and 35.29 ± 0.77%. Ornamental and aromatic plant residues showed higher lignin content (18.91 ± 0.50% and 26.43 ± 0.47%) and pectin was the highest in fruit residues (12.95 ± 0.30%). Agricultural residues generated in marketplaces are a source of enzyme-producing microorganisms and can be used as substrates to obtain amylases, cellulases, and ligninases due to their content of starch, cellulose, and lignin.

https://doi.org/10.18257/raccefyn.1652

Keywords

Marketplaces | Agricultural wastes | Microbial enzymes | Physicochemical characterization | Waste valorization
PDF (Español (España))

References

Abdel Shafy, H. & Mansour, M. (2018). Solid waste issue: Sources, composition, disposal, recycling, and valorization. Egyptian Journal of Petroleum, 27, 1275-1290.

Adriano, M., Gutiérrez, F., Dendooven, L., Salvador-Figueroa, M. (2012). Influence of compost and liquid bioferment on the chemical and biological characteristics of soil cultivated with banana (Musa spp. L.). Journal of Soil Science and Plant Nutrition, 12, 33-43.

Alayón, E. (2020). Guía para la caracterización y cuantificación de residuos sólidos. Inventum, 15, 76-94.

Amadi, O., Egong, E., Nwagu, T., Okpala, G., Onwosi, C., Chukwu, G., Okolo, B., Agu, R., Moneke, A. (2020). Process optimization for simultaneous production of cellulase, xylanase and ligninase by Saccharomyces cerevisiae SCPW 17 under solid state fermentation using Box-Behnken experimental design. Heliyon, 6, 1-12.

Beladhadi, R., Shankar, K., Jayalakshmi, S. (2022). Production of Cocktail of Lignolytic, Cellulolytic and Hemicellulolytic Enzymes by the Novel Bacterium Burkholderia sp. SMB1 Utilizing Rice Bran and Straw: Application in the Saccharification of Untreated Agro-wastes for Bioethanol Production. Waste and Biomass Valorization, 13, 1565-1577.

Bharathiraja, S., Suriya, J., Krishnan, M., Manivasagan, P., Kim, S. (2016). Production of Enzymes From Agricultural Wastes and Their Potential Industrial Applications. Advances in Food and Nutrition Research, 80, 125-148.

Bharti, A., Kumar, A., Dharm, D. (2018). Wheat bran fermentation for the production of cellulase and xylanase by Aspergillus niger NFCCI 4113. Research Journal of Biotechnology, 13, 11-18.

Bhuyan, N., Narzari, R., Gogoi, L., Bordoloi, N., Hiloidhari, M., Palsaniya, D.R., Deb, U., Gogoi, N., Kataki, R. (2020). Valorization of agricultural wastes for multidimensional use. En: R. Kataki, S. Kumar Khanal. (Ed.), Current Developments in Biotechnology and Bioengineering (pp. 41-78). Elsevier.

Bigdeloo, M., Teymourian, T., Kowsari, E., Ramakrishna, S., Ehsani, A. (2021). Sustainability and Circular Economy of Food Wastes: Waste Reduction Strategies, Higher Recycling Methods, and Improved Valorization. Materials Circular Economy, 3, 1-9.

Brust, G. (2019). Management Strategies for Organic Vegetable Fertility. En D. Biswas y S. A. Micallef. (Ed.), Safety and Practice for Organic Food (pp. 193-212). Academic Press.

Cardona, C., Sánchez, O., Ramírez, J., Alzate, L. (2004). Biodegradación de residuos orgánicos de plazas de mercado. Revista Colombiana de Biotecnología, 6, 78-89.

de Castro, R. & Sato, H. (2015). Enzyme Production by Solid State Fermentation: General Aspects and an Analysis of the Physicochemical Characteristics of Substrates for Agro-industrial Wastes Valorization. Waste and Biomass Valorization, 6, 1085-1093.

Deshavath, N.N., Veeranki, V.D., Goud, V.V. (2019). Lignocellulosic feedstocks for the production of bioethanol: availability, structure, and composition. En R. Mahendra. (Ed.), Sustainable Bioenergy: Advances and Impacts (pp. 1-19). Elsevier.

Englyst, K.N., Hudson, G.J., Englyst, H.N. (2006). Starch Analysis in Food. En R. Meyers. (Ed.), Encyclopedia of Analytical Chemistry: Applications, Theory, and Instrumentation (pp. 4246-4262). Chichester: John Wiley & Sons, Ltd.

Fuentes, J. & Durán, M. (2005). Recovery Fats and Oils from Agro-industrial Wastes and By- Products for Use in Industrial Applications. Journal of Applied Sciences, 5, 983-987.

Furini, G., Berger, J., Campo, J., Van der San, S., Germani, J. (2018). Production of lipolytic enzymes by bacteria isolated from biological effluent treatment systems. Anais da Academia Brasileira de Ciências, 90, 2955-2965.

Gavidia, J.G., Venegas, E.A., Ríos, M., Uribe, J.C., Gutiérrez, D.D., Rengifo, R.A., Martínez, J.L. (2020). Determination of the nitrogen to protein conversion factor in eggs of Coturnix coturnix L. (Japanese quail). Archivos Venezolanos de Farmacologia y Terapeutica, 39, 706-708.

Gorissen, S., Crombag, J., Senden, J., Waterval, W., Bierau, J., Verdijk, L., van Loon, L. (2018). Protein content and amino acid composition of commercially available plant-based protein isolates. Amino Acids, 50, 1685-1695.

Heredia, J. & Sánchez, E. (2021). Evaluation of sugarcane bagasse and flower stems as substrates for cellulase production by Bacillus amyloliquefaciens C18 A. Research Journal of Biotechnology, 16, 144-148.

Janusz, G., Pawlik, A., Sulej, J., Świderska, U., Jarosz, A., Paszczyński, A. (2017). Lignin degradation: microorganisms, enzymes involved, genomes analysis and evolution. FEMS Microbiology Reviews, 41, 941-962.

Kirn, F., Siddiqa, A., Noreen, S., Khalid, A., Irshad, M. (2018). Optimized Production of Cellulase (CMCase). International Journal of Applied Biology and Forensics, 2, 194-202.

Kögel Knabner, I. & Amelung, W. (2014). Dynamics, Chemistry, and Preservation of Organic Matter in Soils. En H. D. Holland y K. K. Turekian. (Ed.), Treatise on Geochemistry (pp. 157-215). Oxford, Inglaterra: Elsevier.

Kulic, G. & Radojičić, V. (2011). Analysis of cellulose content in stalks and leaves of large leaf tobacco. Journal of Agricultural Sciences, 56, 207-215.

Mæhre, H., Dalheim, L., Edvinsen, G., Elvevoll, E., Jensen, I.J. (2018). Protein Determination - Method Matters. Foods, 7, 1-11.

Mengqi, Z., Shi, A., Ajmal, M., Ye, L., Awais, M. (2021). Comprehensive review on agricultural waste utilization and high-temperature fermentation and composting. Biomass Conversion and Biorefinery, 11, 1-24.

Mohammad, A. & Teow, Y. (2016). Ultrafiltration for Food Processing. En G. Smithers.(Ed.), Reference Module in Food Science (págs. 1-6). Elsevier.

Müller, J., Bencivenni, M., Caligiani, A., Tedeschi, T., Bruggeman, G., Bosch, M., Petrusan, J., Van Droogenbroeck, B., Elst, K., Sforza, S. (2016). Pectin content and composition from different food waste streams. Food Chemistry, 201, 37-45.

Nair, A., Ithnin, N., Sim, H., Appleton, D. (2017). Energy Crops. En B. Thomas, B. G. Murray y D. J. Murphy. (Ed.), Encyclopedia of Applied Plant Sciences (págs. 164-176). Academic Press.

Navaneethapandian, U., Kumar, A., Liduja, K., Jayachithra, R., Gopakumaran, N. (2021). Biocatalyst: Cellulase Production in Solid State Fermentation (SSF) Using Rice Bran as Substrate. Biointerface Research in Applied Chemistry, 11, 7689-7699.

Obi, N., Okezie, O., Ezugwu, A. (2019). Amylase Production by Solid State Fermentation of Agroindustrial Wastes Using Bacillus species. European Journal of Nutrition & Food Safety, 4, 408-414.

Ojovan, B., Rodica, C., Neagu, S., Cojoc, R., Lucaci, A., Marutescu, L., Florescu, L., Ruginescu, R., Enache, M., Moldoveanu, M. (2021). Metabolic Potential of Some Functional Groups of Bacteria in Aquatic Urban Systems. Fermentation, 7, 1-11.

Olanbiwoninu, A. A. & Fasiku, S. (2015). Production of bacterial amylases and cellulases using sweet potato (Ipomoea batatas (L.) Lam.) peels. African Journal of Biochemistry, 9, 104-109.

Ortiz-Sánchez, I.A., Álvarez-Reyna, V.d., González-Cervantes, G.V., Potisek-Talavera, M.d., Chávez-Simental, J.A. (2015). Concentración de almidón y proteínas solubles en tubérculos de Caladium bicolor en diferentes etapas fenológicas. Revista Mexicana de Ciencias Agrícolas, 6, 483-494.

Panchami, P. & Gunasekaran, S. (2017). Extraction and Characterization of Pectin from Fruit Waste. International Journal of Current Microbiology and Applied, 6, 943-948.

Parillo, R., Ventorino, V., Pepe, O., Cornejo, P., Testa, A. (2017). Use of Compost from Chestnut Lignocellulosic Residues as Substrate for Tomato Growth. Waste and Biomass Valorization, 8, 2711-2720.

Peil, G., Kuss, A., Rave, A., Villarreal, J., Hernandes, Y., Nascente, P. (2016). Bioprospecting of lipolytic microorganisms obtained from industrial effluents. Anais da Academia Brasileira de Ciências, 88, 1769-1779.

Pereira, C., Barros, L., Ferreira, I. (2015). A Comparison of the Nutritional Contribution of Thirtynine Aromatic Plants used as Condiments and/or Herbal Infusions. Plant Foods for Human Nutrition, 70, 176-183.

Ravindran, R., Hassan, S., Williams, G., Jaiswal, A. (2018). A review on bioconversion of agroindustrial wastes to industrially important enzymes. Bioengineering, 5, 1-20.

Rihani, A., Tichati, L., Soumati, B. (2018). Isolation and identification of lipase-producing fungi from local olive oil manufacture in east of Algeria. Scientific Study and Research: Chemistry and Chemical Engineering, Biotechnology, Food Industry, 19, 13-22.

Robertson, T., Alzaabi, A., Robertson, M., Fielding, B. (2018). Starchy carbohydrates in a healthy diet: The role of the humble potato. Nutrients, 10, 1-28.

Saha, M. L., Islam, K. N., Akter, T., Rahman, I. A., Islam, T., Khan, T. (2019). Isolation and identification of amylolytic bacteria from garbage and garden soil. Bangladesh Journal of Botany, 48, 537-545.

Sánchez, E.M. & Heredia, J.P. (2020). Evaluación de residuos de cáscaras de papa como sustrato para la producción de amilasas a partir de Bacillus amyloliquefaciens A16. Revista de la Academia Colombiana de Ciencias Exactas Físicas y Naturales, 44, 794-804.

Santos, F., Teixeira de Carvalho, L., de Carvalho Cardoso, A., de Melo Santos, S. (2021). Evaluation of the production of cellulases by Penicillium sp. FSDE15 using corncob and wheat bran as substrates. Bioresource Technology Reports, 14, 1-6.

Sarkar, N., Kumar, S., Satarupa, G., Bannerjee, S., Aikat, K. (2012). Bioethanol production from agricultural wastes: An overview. Renewable Energy, 37, 19-27.

Soeka, Y. & Sulistiani. (2019). Production and characterization of cellulase from the newly isolated Bacillus subtilis A8 on rice bran and corncob. IOP Conference Series: Earth and Environmental Science, 308, 1-10.

Subramanian, R., Subbramaniyan, P., Noorul Ameen, J., Raj, V. (2016). Double bypasses soxhlet apparatus for extraction of piperine from Piper nigrum. Arabian Journal of Chemistry, 9, 537-540.

Toushik, S.H., Lee, K.Y., Lee, J.S., Kim, K.S. (2017). Functional Applications of Lignocellulolytic Enzymes in the Fruit and Vegetable Processing Industries. Journal of Food Science, 82, 585-593.

Tsai, S., Liu, C., Yang, S. (2007). Microbial conversion of food wastes for biofertilizer production with thermophilic lipolytic microbes. Renewable Energy, 32, 904-915.

Twinomuhwezi, H., Awuchi, C., Kahunde, D. (2020). Extraction and Characterization of Pectin from Orange (Citrus sinensis), Lemon (Citrus limon) and Tangerine (Citrus tangerina). American Journal of Physical Sciences, 1, 17-30.

Valderrama, C., Fernández, A., Duque, Y. (2109). Caracterización y análisis del aprovechamiento de residuos vegetales generados en la central de abastos Merca-Neiva. Ingeniería y región, 22, 4-13.

Ventorino, V., Parillo, R., Testa, A., Aliberti, A., Pepe, O. (2013). Chestnut Biomass Biodegradation for Sustainable Agriculture. Bioresources, 8, 4647-4658.

Walkley, A.J. & Black, I.A. (1934). Estimation of soil organic carbon by the chromic acid titration method. Soil Science, 37, 29-38.

Xu, F. (2010). Structure, Ultrastructure, and Chemical Composition. En S. Run Cang. (Ed.), Cereal Straw as a Resource for Sustainable Biomaterials and Biofuels (pp. 9-47). Elsevier.

Zhang, S., Zheng, Q., Noll, L., Hu, Y., Wanek, W. (2019). Environmental effects on soil microbial nitrogen use efficiency are controlled by allocation of organic nitrogen to microbial growth and regulate gross N mineralization. Soil Biology and Biochemistry, 135, 304-315.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2022 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales