Abstract
In this contribution, the most significant advances in the area of information encryption using optical processing are discussed with an emphasis on advances in noise reduction and elimination. The theoretical description of a compact encryption system and the results of its experimental implementation are presented. Additionally, the inclusion of personalized information containers to protect information and retrieve it free of noise is also explained evidencing the potential of the compact security system. Finally, the perspectives of the research area are presented.
References
Abdollahramezani, S., Hemmatyar, O., Adibi, A. (2020). Meta-optics for spatial optical analog computing. Nanophotonics. 9: 4075-4095. DOI: 10.1515/nanoph-2020-0285
Asociación Colombiana de Ingenieros de Sistemas-ACIS. (2020). Cifras de ciberseguridad en Colombia prenden alarmas al cierre del 2020. Fecha de consulta: noviembre de 2021. Disponible en: https://acis.org.co/portal/content/noticiasdelsector/cifras-de-ciberseguridaden-colombia-prenden-alarmas-al-cierre-del-2020
Alajmi, M., Elashry, I., El-Sayed, H.S., Farag, O.S. (2020). Steganography of Encrypted Messages Inside Valid QR Codes. IEEE Access. 8: 27861-27873. https://doi.org/10.1109/ACCESS.2020.2971984
Aldossari, M., Alfalou, A., Brosseau, C. (2014). Simultaneous compression and encryption of closely resembling images: application to video sequences and polarimetric images. Opt. Express. 22: 22349-22368. https://doi.org/10.1364/OE.22.022349
Alfalou, A. (Ed.). (2018). Advanced Secure Optical Image Processing for Communications. (8-1-8-33). Bristol: United Kingdom: Institute of Physics Publishing.
Alfalou, A. & Brosseau, C. (2009). Optical image compression and encryption methods. Adv. Opt. Photon. 1: 589-636. https://doi.org/10.1364/AOP.1.000589
Alfalou, A. & Mansour, A. (2009). Double random phase encryption scheme to multiplex and simultaneous encode multiple images. Appl. Opt. 48: 5933-5947. https://doi.org/10.1364/AO.48.005933
Ambs, P. (2010). Optical computing: a 60-year adventure. Adv. Opt. Technol. 2010: 372652. https://doi.org/10.1155/2010/372652
Barrera-Ramírez, J.F., Henao, R., Torroba, R. (2005a). Optical encryption method using toroidal zone plates. Opt. Commun. 248: 35-40. https://doi.org/10.1016/j.optcom.2004.11.086
Barrera-Ramírez, J.F., Henao, R., Torroba, R. (2005b). Fault tolerances using toroidal zone plate encryption. Opt. Commun. 256: 489-494. https://doi.org/10.1016/j.optcom.2005.06.077
Barrera-Ramírez, J.F., Henao, R., Tebaldi, M., Torroba, R., Bolognini, N. (2006a). Multiplexing encryption-decryption via lateral shifting of a random phase mask. Opt. Commun. 259: 532-536. https://doi.org/10.1016/j.optcom.2005.09.027
Barrera-Ramírez, J.F., Henao, R., Tebaldi, M., Torroba, R., Bolognini, N. (2006b). Multiplexing encrypted data by using polarized light. Opt. Commun. 260: 109-112. https://doi.org/10.1016/j.optcom.2005.10.053
Barrera-Ramírez, J.F., Henao, R., Tebaldi, M., Torroba, R., Bolognini, N. (2006c). Multiple image encryption using an aperture-modulated optical system. Opt. Commun. 261: 29-33. https://doi.org/10.1016/j.optcom.2005.11.055
Barrera-Ramírez, J.F., Henao, R., Tebaldi, M., Torroba, R., Bolognini, N. (2007). Multipleencoding retrieval for optical security. Opt. Commun. 276: 231-236. https://doi.org/10.1016/j.optcom.2007.04.040
Barrera-Ramírez, J.F., Henao, R., Tebaldi, M., Torroba, R., Bolognini. N. (2008). Code retrieval via undercover multiplexing. Optik. 119: 139-142. https://doi.org/10.1016/j.ijleo.2006.07.008
Barrera-Ramírez, J.F., Henao, R., Tebaldi, M., Torroba, R., Bolognini, N. (2009a). Digital encryption with undercover multiplexing by scaling the encoding mask. Optik. 120: 342-346. https://doi.org/10.1016/j.ijleo.2007.10.002
Barrera-Ramírez, J.F., Tebaldi, M., Torroba, R., Bolognini, N. (2009b). Multiplexing encryption technique by combining random amplitude and phase masks. Optik. 120: 351-355. https://doi.org/10.1016/j.ijleo.2007.10.001
Barrera-Ramírez, J.F. & Torroba, R. (2009c). Efficient encrypting procedure using amplitude and phase as independent channels to display decoy objects. Appl. Opt. 48: 3121-3129. https://doi.org/10.1364/AO.48.003121
Barrera-Ramírez, J. F., Vargas, C., Tebaldi, M., Torroba, R. (2010a). Chosen-plaintext attack on a joint transform correlator encrypting system. Opt. Commun. 283: 3917-3921. https://doi.org/10.1016/j.optcom.2010.06.009
Barrera-Ramírez, J.F., Vargas, C., Tebaldi, M., Torroba, R., Bolognini, N. (2010b). Known plaintext attack on a joint transform correlator encrypting system. Opt. Lett. 35: 3553-3555. https://doi.org/10.1364/OL.35.003553
Barrera-Ramírez, J.F. & Torroba, R. (2010c). One step multiplexing optical encryption. Opt. Commun. 283: 1268-1272. https://doi.org/10.1016/j.optcom.2009.11.083
Barrera-Ramírez, J.F., Rueda, E., Ríos, C., Tebaldi, M., Bolognini, N., Torroba, R. (2011). Experimental opto-digital synthesis of encrypted sub-samples of an image to improve its decoded quality. Opt. Commun. 284: 4350-4355. https://doi.org/10.1016/j.optcom.2011.05.035
Barrera-Ramírez, J.F., Tebaldi, M., Ríos C., Rueda E., Bolognini, N., Torroba R. (2012). Experimental multiplexing of encrypted movies using a JTC architecture. Opt. Express. 20: 3388-3393. https://doi.org/10.1364/OE.20.003388
Barrera-Ramírez, J.F., Mira-Agudelo, A., Torroba, R. (2013a). Optical encryption and QRcodes: Secure and noise-free information retrieval. Opt. Express. 21: 5373-5378. https://doi.org/10.1364/OE.21.005373
Barrera-Ramírez, J.F., Velez-Zea, A., Torroba. R. (2013b). Experimental multiplexing protocol to encrypt text of any length. J. Opt. 15: 055404. https://doi.org/10.1088/2040-8978/15/5/055404
Barrera-Ramírez, J.F., Trejos, S., Tebaldi, M., Torroba. R. (2013c). Experimental protocol for packaging and encrypting multiple data. J. Opt. 15: 055406. https://doi.org/10.1088/2040-8978/15/5/055406
Barrera-Ramírez, J.F., Mira-Agudelo, A., Torroba, R. (2014a). Experimental QR code optical encryption: noise-free data recovering. Opt. Lett. 39: 3074-3077. https://doi.org/10.1364/OL.39.003074
Barrera-Ramírez, J.F. Velez-Zea, A., Torroba, R. (2014b). Experimental scrambling and noise reduction applied to the optical encryption of QR codes. Opt. Express. 22: 20268-20277. https://doi.org/10.1364/OE.22.020268
Barrera-Ramírez, J.F., Mira-Agudelo A., Torroba, R. (Diciembre 18, 2015a). Aparato ópticofísico y procedimientos para la encriptación y recuperación de información libre de ruido. Patente de invención 14 98035.
Barrera-Ramírez, J.F. & Torroba, R. (2015b). Encriptación óptica de información con recuperación libre de ruido. Rev. Acad. Colomb. Cienc. Ex. Fis. Nat. 39: 48-54. https://doi.org/10.18257/raccefyn.259
Barrera-Ramírez, J.F., Jaramillo-Osorio, A., Velez-Zea, A., Torroba, R. (2016). Experimental analysis of a joint free space cryptosystem. Opt. Lasers Eng. 83: 126-130. https://doi.org/10.1016/j.optlaseng.2016.03.010
Blau, Y., Bar-On, O., Hanein, Y., Boag, A., Scheuer, J. (2020). Meta-hologram-based authentication scheme employing a speckle pattern fingerprint. Opt. Express. 28: 8924-8936. https://doi.org/10.1364/OE.388233
Carnicer, A., Hassanfiroozi, A., Latorre-Carmona, P., Huang, Y.P, Javidi, B. (2015). Security authentication using phase-encoded nanoparticle structures and polarized light. Opt. Lett. 40:135-138. https://doi.org/10.1364/OL.40.000135
Carnicer, A. & Javidi, B. (2017). Optical security and authentication using nanoscale and thin-film structures. Adv. Opt. Photon. 9: 218-256. https://doi.org/10.1364/AOP.9.000218
Chen, J., Bao, N., Zhang, L.Y., Zhu, Z. (2018). Optical information authentication using optical encryption and sparsity constraint. Opt. Lasers Eng. 107: 352-363. https://doi.org/10.1016/j.optlaseng.2018.04.0
Chen, L. & Zhao, D. (2006). Optical image encryption with Hartley transforms. Opt. Lett. 31: 3438-3440. https://doi.org/10.1364/ol.31.003438
Chen, W., Javidi, B., Chen, X. (2014). Advances in optical security systems. Adv. Opt. Photon. 6:120-155. https://doi.org/10.1364/AOP.6.000120
Cheremkhin, P.A., Krasnov, V.V., Rodin, V.G., Starikov, R.S. (2017). QR code optical encryption using spatially incoherent illumination. Laser Phys. Lett. 14: 026202. https://doi.org/10.1088/1612-202X/aa5242
Cheremkhin, P.A., Evtikhiev, N.N., Krasnov, V.V., Rodin, V.G., Ryabcev, I.P., Shifrina, A.V., Starikov, R.S. (2021a). Lensless optical encryption with speckle-noise suppression and QR codes. Appl. Opt. 60: 7336-7345. https://doi.org/10.1364/AO.430968
Cheremkhin, P.A., Evtikhiev, N.N., Krasnov, V.V., Ryabcev, I.P., Shifrina, A.V., Starikov., R.S. (2021b). New customizable digital data container for optical cryptosystems. J. Opt. 23: 115701. https://doi.org/10.1088/2040-8986/ac2166
Dou, S., Shen, X., Zhou, B., Lin, C., Lin, Y., Cheng, Y. (2019). Security-enhanced nonlinear cryptosystem based on joint transform correlator. Opt. Commun. 445: 211-221. https://doi.org/10.1016/j.optcom.2019.04.011
Evtikhiev, N.N., Krasnov, V.V., Kuzmin, I.D., Molodtsov, D.Y., Rodin, V.G., Starikov, R.S., Cheremkhin, P.A. (2020). QR-code optical encryption in the scheme with spatially incoherent illumination based on two micromirror light modulators. Quantum Electron. 50: 195-196. https://doi.org/10.1070/QEL17139
Françon, M. (1975). Information processing using speckle patterns. En Dainty, C. Laser speckle and related phenomena (183-185). New York, Estados Unidos: Springer-Verlag Berlin Heidelberg.
Goodman, J.W. (1996). Introduction to Fourier Optics (232-2467) (2da Ed.). New York, Estados Unidos: McGraw-Hill.
Gluckstad, G., Riso, F. (Junio 14, 2005). Optical encryption and decryption method and system. U.S. patent 6907124.}
Graydon, O. (2013). Cryptography: Quick response codes. Nat. Photon. 7: 343. https://doi.org/10.1038/nphoton.2013.127
Hai, H., Pan, S., Liao, M., Lu, D., He, W., Peng, X. (2019). Cryptanalysis of random-phaseencoding-based optical cryptosystem via deep learning. Opt. Express. 27: 21204-21213. https://doi.org/10.1364/OE.27.021204
He, X., Jiang, Z., Kong, Y., Wang, S., Liu, C. (2020). Optical multi-image encryption based on focal length multiplexing and multimode phase retrieval. Appl. Opt. 59: 7801-7812. https://doi.org/10.1364/AO.398459
Henao, R., Rueda, E., Barrera-Ramírez, J.F., Torroba. R. (2010). Noise-free recovery of optodigital encrypted and multiplexed images. Opt. Lett. 35: 333-335. https://doi.org/10.1364/OL.35.000333
Hernández, M., Baquero, L., Gil, C., Cardenas, D.A., Gil, A. (2018). Approach to the State of the Art of Ciberdelincuence in Colombia. Int. J. Appl. Eng. Res. 13: 16648-16655.
International Organization for Standardization-ISO. (2006). IEC 18004. Information technology - Automatic identification and data capture techniques - QR Code 2005 bar code symbology specification. International Organization for Standardization, Geneva, Switzerland.
Jaramillo-Osorio, A., Barrera-Ramírez, J.F., Velez-Zea, A., Torroba, R. (2018). Fractional optical cryptographic protocol for data containers in a noise-free multiuser environment. Opt. Lasers Eng. 102: 119-125. https://doi.org/10.1016/j.optlaseng.2017.10.008
Jaramillo-Osorio, A., Barrera-Ramírez, J.F., Mira-Agudelo, A, Velez-Zea, A., Torroba, R. (2020a). High performance compact optical cryptosystem without reference arm. J. Opt. 22: 035702. https://doi.org/10.1088/2040-8986/ab68f0
Jaramillo-Osorio, A., Mira-Agudelo, A., Velez-Zea, A., Barrera-Ramírez, J.F., Torroba, R. (2020b). Secure selective recovery protocol for multiple optically encrypted data. Opt. Laser Eng. 137: 106383. https://doi.org/10.1016/j.optlaseng.2020.106383
Jaramillo-Osorio, A., Torres-Sepúlveda, W., Velez-Zea, A., Mira-Agudelo, A., Barrera-Ramírez, J.F., Torroba, R. (2022a). Focus-tunable experimental optical cryptosystem. Opt. & Laser Technol. 148: 107689. https://doi.org/10.1016/j.optlastec.2021.107689
Jaramillo-Osorio, A., Velez-Zea, A., Cabrera, H., Niemela, J., Barrera-Ramírez, J.F., Torroba, R. (2022b). Optical encryption using phase modulation generated by thermal lens effect. J. Opt. 24: 025702. https://doi.org/10.1088/2040-8986/ac4412
Javidi, B. (Febrero, 2003). Method and Apparatus for Encryption Using Partial Information. U.S. Patent 6519340 B1.
Javidi, B., Carnicer, A., Yamaguchi, M., Nomura, T., Pérez-Cabré, E., Millán, M.S., Nishchal, N.K., et al. (2016). Roadmap on optical security. J. Opt. 18: 083001. https://doi.org/10.1088/2040-8978/18/8/083001
Javidi, B., Esmail, A., Zhang, G. (Marzo 23, 2010). Optical Security system using Fourier plane encoding. U.S. patent 7684098.
Javidi, B. & Tajahuerce, E. (Mayo 22, 2007). Information security using digital holography. U.S. patent 7221760 B2.
Javidi, B., Towghi, N., Maghzi, N., Verrall S.C. (2000). Error-reduction techniques and error analysis for fully phase- and amplitude-based encryption. Appl. Opt. 39: 4117-4130. https://doi.org/10.1364/AO.39.004117
Javidi, B., Zhang, G., Li, J. (1996). Experimental demonstration of the random phase encoding technique for image encryption and security verification. Opt. Eng. 35: 2506-2512. https://doi.org/10.1117/1.600854
Jiao, S., Gao, Y., Lei, T., Yuan, X. (2020). Known-plaintext attack to optical encryption systems with space and polarization encoding. Opt. Express. 28: 8085-8097. https://doi.org/10.1364/OE.387505
Jiao, S., Zhou, C., Shi, Y., Zou, W., Li, X. (2019). Review on optical image hiding and watermarking techniques. Opt. Laser Technol. 109: 370-380. https://doi.org/10.1016/j.optlastec.2018.08.011
Kafri, O. & Keren, E. (1987). Encryption of pictures and shapes by random grids. Opt. Lett. 12: 377-379. https://doi.org/10.1364/OL.12.000377
Karimi, N., Basu, K., Chang, C.H., Fung, J.M. (2021). Hardware Security in Emerging Technologies: Vulnerabilities, Attacks, and Solutions. IEEE Trans. Emerg. Sel. Topics Circuits Syst. 11: 223-227. https://doi.org/10.1109/JETCAS.2021.3084498
Kaur, M., Singh, S., Kaur, M. (2021). Computational Image Encryption Techniques: A Comprehensive Review. Math. Probl. Eng. 2021: 5012496. https://doi.org/10.1155/2021/5012496
Kumar, A. & Nishchal, N. (2019). Quick response code and Interference-based optical asymmetric cryptosystem. J. Inf. Secur. Appl. 45: 35-43. https://doi.org/10.1016/j.jisa.2019.01.004
Kwok, S.K., Ting, J.S.L., Tsang, A.H.C., Lee, W.B., Cheung, B.C.F. (2010). Design and development of a mobile EPC-RFID-based self-validation system (MESS) for product authentication. Comput. Ind. 61: 624-35. https://doi.org/10.1016/j.compind.2010.02.001
Lázaro, J., Astarloa, A., Rodríguez, M., Bidarte, U., Jiménez, J. (2021). A Survey on Vulnerabilities and Countermeasures in the Communications of the Smart Grid. Electronics. 10:1881. https://doi.org/10.3390/electronics10161881
Li, H., Guo, C., Muniraj, I., Schroeder, B.C., Sheridan, J.T., Jia, S. (2017a). Volumetric Lightfield Encryption at the Microscopic Scale. Sci. Rep. 7: 40113. https://doi.org/10.1038/srep40113
Li, L., Jun Cui, T., Ji, W., et al. (2017b). Electromagnetic reprogrammable coding-metasurface holograms. Nat. Commun. 8: 197. https://doi.org/10.1038/s41467-017-00164-9
Li, W.S., Shen, Y., Chen, Z.J., Cui, Q., Li, S.S., Chen, L.J. (2017c). Demonstration of patterned polymer-stabilized cholesteric liquid crystal textures for anti-counterfeiting two-dimensional barcodes. Appl. Opt. 56: 601-606. https://doi.org/10.1364/AO.56.000601
Li, X., Zhao, M., Zhou, X., Wang, Q.H. (2018). Ownership protection of holograms using quick-response encoded plenoptic watermark. Opt. Express. 26: 30492-30508. https://doi.org/10.1364/OE.26.030492
Liang, J., Gao, L., Hai, P., Li, C., Wang, L.V. (2015). Encrypted Three-dimensional Dynamic Imaging using Snapshot Time-of-flight Compressed Ultrafast Photography. Sci. Rep. 5: 15504. https://doi.org/10.1038/srep15504
Liansheng, S., Cong, D., Minjie, X., Ailing, T., Anand. A. (2019). Information encryption based on the customized data container under the framework of computational ghost imaging. Opt. Express. 27: 16493-16506. https://doi.org/10.1364/OE.27.016493
Lim, K.T.P., Liu, H., Liu, Y., Yang, J.K.W. (2019). Holographic colour prints for enhanced optical security by combined phase and amplitude control. Nat. Commun. 10: 25. https://doi. org/10.1038/s41467-018-07808-4
Lima, J.B., Madeiro, F., Sales, F.J.R. (2015). Encryption of medical images based on the cosine number transform. Signal Process. Image Commun. 35: 1-8. https://doi.org/10.1016/j.image.2015.03.005
Lin, C., Shen, X., Hua, B., Wang, Z. (2015). Three-dimensional polarization marked multiple-QR code encryption by optimizing a single vectorial beam. Opt. Commun. 352: 25-32. https://doi.org/10.1016/j.optcom.2015.04.068
Liu, S., Guo, C., Sheridan, J.T. (2014). A review of optical image encryption techniques. Opt. Laser Technol. 57: 327-342. https://doi.org/10.1016/j.optlastec.2013.05.023
Liu, Z., Xu, L., Lin, C., Liu, S. (2010). Image encryption by encoding with a nonuniform optical beam in gyrator transform domains. Appl. Opt. 49: 5632-5637. https://doi.org/10.1364/AO.49.005632
Lu, X.J., Yu, F.T.S., Gregory, D.A. (1990). Comparison of Vander Lugt and joint transform correlators. Appl. Phys. B. 51: 153-164. https://doi.org/10.1007/BF00326017
Markman, A., Wang, J., Javidi, B. (2014). Three-dimensional integral imaging displays using a quick-response encoded elemental image array. Optica. 1: 332-335. https://doi.org/10.1364/OPTICA.1.000332
Meng, F., Umair, M.M., Zhang, S, Meng, Y., Tang, B. (2021a). Facile fabrication of encryption composite materials with trilayer quasi-amorphous heterostructure. Sci China Mater. 64:909-919. https://doi.org/10.1007/s40843-020-1500-9
Meng, Y., Chen, Y., Lu, L., et al. (2021b). Optical meta-waveguides for integrated photonics and beyond. Light Sci. Appl. 10: 235. https://doi.org/10.1038/s41377-021-00655-x
Millán, M.S. (2012). Advanced optical correlation and digital methods for pattern matching-50th anniversary of Vander Lugt matched filter. J. Opt. 14: 10300. https://doi.org/10.1088/2040-8978/14/10/103001
Mosso, F., Tebaldi, M., Barrera-Ramírez, J.F., Bolognini, N., Torroba, R. (2011a). All-optical encrypted movie. Opt. Express. 19: 5706-5712. https://doi.org/10.1364/OE.19.005706
Mosso, F., Tebaldi, M., Barrera-Ramírez, J.F., Bolognini, N., Torroba, R. (2011b). Pure optical dynamical color encryption. Opt. Express. 19: 13779-13786. https://doi.org/10.1364/OE.19.013779
Mughaid, A., Al-Arjan, A., Rasmi, M., AlZu’bi, S. (2021). Intelligent security in the era of AI: The key vulnerability of RC4 algorithm. International Conference on Information Technology (ICIT) (691-694). https://doi.org/10.1109/ICIT52682.2021.9491709.
Nomura, T. & Javidi B. (2000). Optical encryption using a joint transform correlator architecture. Opt. Eng. 39: 2031-2035. https://doi.org/10.1117/1.1304844
Nomura, T., Pérez-Cabré, E., Millán, M.S., Javidi, B. (2009). Optical Techniques for Information Security. Proc. IEEE. 97: 1128-1148. https://doi.org/10.1109/JPROC.2009.2018367
Paganin, D.M. (2011). Spotlight on Optics: All-optical encrypted movie. Optica Publishing Group. Fecha de consulta: noviembre de 2021. Disponible en: https://www.osapublishing.org/spotlight/summary.cfm?uri=oe-19-6-5706
Peng, X., Zhang, P., Wei, H., Yu, B. (2006). Known-plaintext attack on optical encryption based on double random phase keys. Opt. Lett. 31: 1044-1046. https://doi.org/10.1364/OL.31.001044
Petriashvili, G., Devadze, L., Chanishvili, A., Zurabishvili, C., Sepashvili, N., Ponjavidze, N., De Santo, M.P., Barberi, R. (2018). Spiropyran doped rewritable cholesteric liquid crystal polymer film for the generation of quick response codes. Opt. Mater. Express. 8: 3708-3716. https://doi.org/10.1364/OME.8.003708
Pile, D. (2010). Optical encryption: The ghost holds a secret. Nat. Photon. 4: 587. https://doi.org/10.1038/nphoton.2010.206
Ponjavidze, N., De Santo, M.P., Barberi, R. (2018). Spiropyran doped rewritable cholesteric liquid crystal polymer film for the generation of quick response codes. Opt. Mater. Express. 8:3708-3716. https://doi.org/10.1364/OME.8.003708
Qin, Y., Gong, Q., Wang, H., Wang, Z. (2018a). Authentication-based optical cryptosystem with noise-free information retrieval. Opt. Commun. 426: 325-332. https://doi.org/10.1016/j.optcom.2018.05.079
Qin, Y., Wang, Z., Wang, H., Gong, Q., Zhou, N. (2018b). Robust information encryption diffractive-imaging-based scheme with special phase retrieval algorithm for a customized data container. Opt. Lasers Eng. 105: 118-124. https://doi.org/10.1364/OE.27.016493
Qin., Y. & Zhang, Y. (2017). Information Encryption in Ghost Imaging with Customized Data Container and XOR Operation. IEEE Photon. J. 9: 1-8. https://doi.org/10.1109/JPHOT.2017.2690314
Qu, G., Yang, W., Song, Q., Liu, Y., Qiu, C.W., Han, J., Tsai, D.P., Xiao, S. (2020). Reprogrammable meta-hologram for optical encryption. Nat. Commun. 11: 5484. https://doi.org/10.1038/s41467-018-07808-4
Refregier, P. & Javidi, B. (1995). Optical image encryption based on input plane and Fourier plane random encoding. Opt. Lett. 20: 767-769. https://doi.org/10.1364/OL.20.000767
Reshef, O., DelMastro, M.P., Bearne, K.K.M. et al. (2021). An optic to replace space and its application towards ultra-thin imaging systems. Nat. Commun. 12: 3512. https://doi.org/10.1038/s41467-021-23358-8
Rueda, E., Barrera-Ramírez J.F., Henao, R., Torroba, R. (2009a). Optical encryption with a reference wave in a joint transform correlator architecture. Opt. Commun. 282: 3243-3249. https://doi.org/10.1016/j.optcom.2009.05.022
Rueda, E., Barrera-Ramírez J.F., Henao, R., Torroba, R. (2009b). Lateral shift multiplexing with a modified random mask in a joint transform correlator encrypting architecture. Opt. Eng. 48: 27006. https://doi.org/10.1117/1.3080753
Saini, N. & Sinha, A. (2015). Video encryption using chaotic masks in joint transform correlator. J. Opt. 17: 035701. https://doi.org/10.1088/2040-8978/17/3/035701
Shi, X. & Zhao, D. (2011). Color image hiding based on the phase retrieval technique and Arnold transform. Appl. Opt. 50: 2134-2139. https://doi.org/10.1364/AO.50.002134
Singh, M., Kumar, A., Singh, K. (2008). Multiplexing in optical encryption by using an aperture system and a rotating sandwich random phase diffuser in the Fourier plane. Opt. Lasers Eng. 46: 243-251. https://doi.org/10.1016/j.optlaseng.2007.10.001
Singh, M., Kumar, A., Singh, K. (2009). Encryption and decryption using a sandwich phase diffuser made by using two speckle patterns and placed in the Fourier plane: Simulation results. Optik. 120: 916-922. https://doi.org/10.1016/j.ijleo.2008.03.025
Situ, G. & Zhang, J. (2005). Multiple-image encryption by wavelength multiplexing. Opt. Lett. 30: 1306-1308. https://doi.org/10.1364/OL.30.001306
Sui, L., Xu, M., Tian, A. (2017). Optical noise-free image encryption based on quick response code and high dimension chaotic system in gyrator transform domain. Opt. Laser Eng. 91: 106-114. https://doi.org/10.1364/AO.59.000474
Tanha, M., Kheradmand, R., Ahmadi-Kandjani, S. (2012). Gray-scale and color optical encryption based on computational ghost imaging. Appl. Phys. Lett. 101: 28-31. https://doi.org/10.1063/1.4748875
Tebaldi M., Horrillo, S., Pérez-Cabré, E., Millán, M.S., Amaya, D., Torroba. R. et al. (2011). Experimental color encryption in a joint transform correlator architecture. J. Phys. Conf. Ser. 274: 012054. https://doi.org/10.1088/1742-6596/274/1/012054
Ting, S.L. & Tsang, A.H.C. (2013). A two-factor authentication system using Radio Frequency Identification and watermarking technology. Comput. Ind. 64: 268-79. https://doi.org/10.1016/j.compind.2012.11.002
Torroba, R. & Barrera-Ramírez, J.F. (2015). Protección de datos usando un sistema experimental de encriptación de correlador de transformada conjunta. Rev. Acad. Colomb. Cienc. Ex. Fis. Nat. 39: 55-60. https://doi.org/10.18257/raccefyn.263
Treacy, S. (2013). The creative power of Colaboration. The world Academy of Sciences TWAS. Fecha de consulta: noviembre de 2021. Disponible en: https://twas.org/article/creativepower-collaboration
Trejos, S., Barrera-Ramírez, J.F., Torroba, R. (2015). Optimized and secure technique for multiplexing QR code images of single characters: Application to noiseless messages retrieval. J. Opt. 17: 085702. https://doi.org/10.1088/2040-8978/17/8/085702
Unnikrishnan, G., Joseph, J., Singh, K. (1998). Optical encryption system that uses phase conjugation in a photorefractive crystal. Appl. Opt. 31: 8181-8186. https://doi.org/10.1364/AO.37.008181
Vander-Lugt, A. (1964). Signal detection by complex spatial filtering. IEEE Trans. Inf. Theory. 10:139-145. https://doi.org/10.1109/TIT.1964.1053650
Velez-Zea, A., Barrera-Ramírez, J.F., Torroba, R. (2016a). Three-dimensional joint transform correlator cryptosystem. Opt. Lett. 41: 599-602. https://doi.org/10.1364/OL.41.000599
Velez-Zea A., Barrera-Ramírez J.F., Torroba, R. (2016b). Customized data container for improved performance in optical cryptosystems. J. Opt. 18: 125702. https://doi.org/10.1088/2040-8978/18/12/125702
Velez-Zea, A., Barrera-Ramírez, J.F., Torroba, R. (2017a). Experimental optical encryption of grayscale information. Appl. Opt. 56: 5883-5889. https://doi.org/10.1364/AO.56.005883
Velez-Zea, A., Barrera-Ramírez, J.F., Torroba, R. (2017b). Innovative speckle noise reduction procedure in optical encryption. J. Opt. 19: 055704. https://doi.org/10.1088/2040-8986/aa6526
Velez-Zea, A., Barrera-Ramírez, J.F., Torroba, R. (2017c). Cryptographic salting for security enhancement of double random phase encryption schemes. J. Opt. 19: 105703. https://doi.org/10.1088/2040-8986/aa8738
Velez-Zea, A., Barrera-Ramírez, J.F., Torroba, R. (2018). Optimized random phase encryption. Opt. Lett. 43: 3558-3561. https://doi.org/10.1364/OL.43.003558
Velez-Zea, A., Barrera-Ramirez, J.F., Torroba, R. (2019). Secure real-time generation and display of color holographic movies. Opt. Lasers Eng. 122: 239-244. https://doi.org/10.1016/j.optlaseng.2019.06.010
Vilardy, J.M., Millán, M.S., Peréz-Cabre, E. (2013). Improved decryption quality and security of a joint transform correlator-based encryption system. J. Opt. 15: 025401. https://doi.org/10.1088/2040-8978/15/2/025401
Vilardy, J.M., Millán, M.S., Pérez-Cabré, E. (2014). Nonlinear optical security system based on a joint transform correlator in the Fresnel domain. Appl. Opt. 53: 1674. DOI: 10.1364/AO.53.001674
Vilardy, J.M., Millán, M.S., Pérez-Cabré, E. (2017). Nonlinear image encryption using a fully phase nonzero-order joint transform correlator in the Gyrator domain. Opt. Lasers Eng. 89: 88-94. https://doi.org/10.1016/j.optlaseng.2016.02.013
Vilardy, J.M., Barba, L., Torres, C.O. (2019a). Image Encryption and Decryption Systems Using the Jigsaw Transform and the Iterative Finite Field Cosine Transform. Photonics. 6: 121 (2019a). https://doi.org/10.3390/photonics6040121
Vilardy, J.M., Pérez, R.A., Torres, C.O. (2019b). Optical Image Encryption Using a Nonlinear Joint Transform Correlator and the Collins Diffraction Transform. Photonics. 6: 115. https://doi.org/10.3390/photonics6040115
Verified Market Research-VMR. Encryption Software Market Size And Forecast to 2025. Fecha de consulta noviembre de 2021. Disponible en: https://www.verifiedmarketresearch.com/product/global-encryption-software-market-size-and-forecast-to-2025/
Wang, C.H., Hwang, Y.S., Wang, H.C., Wang, Y.L, Tsai, K.Y. (2020). Microstructure overlapping image application with optical decryption. J. Opt. Soc. Am. A 37: 1361-1368. https://doi.org/10.1364/JOSAA.393182
Wang, K., Liang, J., Chen, R., Gao, Z., Zhang, C., Yan, Y., Yao, J., Zhao, Y.S. (2021). Geometry-Programmable Perovskite Microlaser Patterns for Two-Dimensional Optical Encryption. Nano Lett. 21: 6792-6799. https://doi.org/10.1021/acs.nanolett.1c01423
Wang, W.C. & Schipf, D.R. (Junio 13, 2019). Fluid-optical encryption system and method thereof. US patent 0182407 A1.
Wang, L., Wu, Q., Situ, G. (2019). Chosen-plaintext attack on the double random polarization encryption. Opt. Express 27: 32158-32167. https://doi.org/10.1364/OE.27.032158
Wang, Q., Rogers, E., Gholipour, B. et al. (2016). Optically reconfigurable metasurfaces and photonic devices based on phase change materials. Nat. Photon. 10: 60-65. https://doi.org/10.1038/nphoton.2015.247
Weaver, C.S., Goodman, J.W. (1966). A Technique for Optically Convolving Two Functions. Appl. Opt. 5: 1248-1249. https://doi.org/10.1364/AO.5.001248
Wu, H., Li, Q., Meng, X., Yang, X., Liu, S., Yin, Y. (2021). Cryptographic analysis on an optical random-phase-encoding cryptosystem for complex targets based on physics-informed learning. Opt. Express. 29: 33558-33571. https://doi.org/10.1364/OE.441293
Wu, J., Wang, J., Nie, Y., Hu. L. (2019). Multiple-image optical encryption based on phase retrieval algorithm and fractional Talbot effect. Opt. Express. 27: 35096-35107. https://doi.org/10.1364/OE.27.035096
Yan, A., Lu, C., Yu, J., Tang, M., Dong, J., Hu, Z., Zhang, H. (2019). Multiple-image encryption based on angular-multiplexing holography with quick response code and spiral phase keys. Appl. Opt. 58: G6-G10.
Yong-Liang, X., Xin, Z., Sheng, Y., Qiang, L., Yang-Cong, L. (2009). Multiple-image optical encryption: an improved encoding approach.Appl. Opt. 48: 2686-2692. https://doi.org/10.1364/AO.48.002686
Zhang, L., Wang, Y., Li, D-H, Li, Q., Zhao, W., Li, X. (2021). Cryptanalysis for a light-field 3D cryptosystem based on M-cGAN. Opt. Lett. 46: 4916-4919. https://doi.org/10.1364/OL.436049
Zhang, L., Wang, Y., Zhang, D. (2022). Research on multiple-image encryption mechanism based on Radon transform and ghost imaging. Opt. Commun. 504: 127494. https://doi.org/10.1016/j.optcom.2021.127494
Zhong, Z., Zhang, Y., Shan, M., Wang, Y., Zhang, Y., Xie, H. (2014). Optical movie encryption based on a discrete multiple-parameter fractional Fourier transform. J. Opt. 16: 125404. https://doi.org/10.1088/2040-8978/16/12/125404
Zhou, N., Li, H., Wang, D., Pan, S., Zhou, Z. (2015). Image compression and encryption scheme based on 2D compressive sensing and fractional Mellin transform. Opt. Commun. 343: 10-21. https://doi.org/10.1016/j.optcom.2014.12.084
Zhu, L., Wang, A., Deng, M., Lu, B., Guo, X. (2021). Experimental demonstration of multiple dimensional coding decoding for image transfer with controllable vortex arrays. Sci. Rep. 11: 12012. https://doi.org/10.1038/s41598-021-91553-0
Zhu, Y., Xu, W., Shi, Y. (2019). High-capacity encryption system based on single-shotptychography encoding and QR code. Opt. Commun. 435: 426-432. https://doi.org/10.1016/j.optcom.2018.11.040
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright (c) 2022 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales