Encriptación de información mediante procesamiento óptico
PDF

Cómo citar

Barrera-Ramírez, J. F. (2022). Encriptación de información mediante procesamiento óptico. Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 46(178), 68–89. https://doi.org/10.18257/raccefyn.1597

Descargas

Los datos de descargas todavía no están disponibles.

Artículos similares

También puede {advancedSearchLink} para este artículo.

Métricas Alternativas


Dimensions

Resumen

En esta contribución se discuten los avances más significativos en el campo de la encriptación de información mediante procesamiento óptico con énfasis en los adelantos en la reducción y la eliminación del ruido. Se hace la descripción teórica de un sistema de encriptación compacto y se presentan los resultados de su implementación experimental. Además, se demuestra que la inclusión de contenedores de información personalizados permite la protección de la información y su recuperación libre de ruido, evidenciando el potencial del sistema de seguridad compacto. Por último, se presentan las perspectivas en el área de investigación.

https://doi.org/10.18257/raccefyn.1597

Palabras clave

Encriptación de información | Procesamiento óptico | Protección de datos | Recuperación libre de ruido
PDF

Citas

Abdollahramezani, S., Hemmatyar, O., Adibi, A. (2020). Meta-optics for spatial optical analog computing. Nanophotonics. 9: 4075-4095. DOI: 10.1515/nanoph-2020-0285

Asociación Colombiana de Ingenieros de Sistemas-ACIS. (2020). Cifras de ciberseguridad en Colombia prenden alarmas al cierre del 2020. Fecha de consulta: noviembre de 2021. Disponible en: https://acis.org.co/portal/content/noticiasdelsector/cifras-de-ciberseguridaden-colombia-prenden-alarmas-al-cierre-del-2020

Alajmi, M., Elashry, I., El-Sayed, H.S., Farag, O.S. (2020). Steganography of Encrypted Messages Inside Valid QR Codes. IEEE Access. 8: 27861-27873. https://doi.org/10.1109/ACCESS.2020.2971984

Aldossari, M., Alfalou, A., Brosseau, C. (2014). Simultaneous compression and encryption of closely resembling images: application to video sequences and polarimetric images. Opt. Express. 22: 22349-22368. https://doi.org/10.1364/OE.22.022349

Alfalou, A. (Ed.). (2018). Advanced Secure Optical Image Processing for Communications. (8-1-8-33). Bristol: United Kingdom: Institute of Physics Publishing.

Alfalou, A. & Brosseau, C. (2009). Optical image compression and encryption methods. Adv. Opt. Photon. 1: 589-636. https://doi.org/10.1364/AOP.1.000589

Alfalou, A. & Mansour, A. (2009). Double random phase encryption scheme to multiplex and simultaneous encode multiple images. Appl. Opt. 48: 5933-5947. https://doi.org/10.1364/AO.48.005933

Ambs, P. (2010). Optical computing: a 60-year adventure. Adv. Opt. Technol. 2010: 372652. https://doi.org/10.1155/2010/372652

Barrera-Ramírez, J.F., Henao, R., Torroba, R. (2005a). Optical encryption method using toroidal zone plates. Opt. Commun. 248: 35-40. https://doi.org/10.1016/j.optcom.2004.11.086

Barrera-Ramírez, J.F., Henao, R., Torroba, R. (2005b). Fault tolerances using toroidal zone plate encryption. Opt. Commun. 256: 489-494. https://doi.org/10.1016/j.optcom.2005.06.077

Barrera-Ramírez, J.F., Henao, R., Tebaldi, M., Torroba, R., Bolognini, N. (2006a). Multiplexing encryption-decryption via lateral shifting of a random phase mask. Opt. Commun. 259: 532-536. https://doi.org/10.1016/j.optcom.2005.09.027

Barrera-Ramírez, J.F., Henao, R., Tebaldi, M., Torroba, R., Bolognini, N. (2006b). Multiplexing encrypted data by using polarized light. Opt. Commun. 260: 109-112. https://doi.org/10.1016/j.optcom.2005.10.053

Barrera-Ramírez, J.F., Henao, R., Tebaldi, M., Torroba, R., Bolognini, N. (2006c). Multiple image encryption using an aperture-modulated optical system. Opt. Commun. 261: 29-33. https://doi.org/10.1016/j.optcom.2005.11.055

Barrera-Ramírez, J.F., Henao, R., Tebaldi, M., Torroba, R., Bolognini, N. (2007). Multipleencoding retrieval for optical security. Opt. Commun. 276: 231-236. https://doi.org/10.1016/j.optcom.2007.04.040

Barrera-Ramírez, J.F., Henao, R., Tebaldi, M., Torroba, R., Bolognini. N. (2008). Code retrieval via undercover multiplexing. Optik. 119: 139-142. https://doi.org/10.1016/j.ijleo.2006.07.008

Barrera-Ramírez, J.F., Henao, R., Tebaldi, M., Torroba, R., Bolognini, N. (2009a). Digital encryption with undercover multiplexing by scaling the encoding mask. Optik. 120: 342-346. https://doi.org/10.1016/j.ijleo.2007.10.002

Barrera-Ramírez, J.F., Tebaldi, M., Torroba, R., Bolognini, N. (2009b). Multiplexing encryption technique by combining random amplitude and phase masks. Optik. 120: 351-355. https://doi.org/10.1016/j.ijleo.2007.10.001

Barrera-Ramírez, J.F. & Torroba, R. (2009c). Efficient encrypting procedure using amplitude and phase as independent channels to display decoy objects. Appl. Opt. 48: 3121-3129. https://doi.org/10.1364/AO.48.003121

Barrera-Ramírez, J. F., Vargas, C., Tebaldi, M., Torroba, R. (2010a). Chosen-plaintext attack on a joint transform correlator encrypting system. Opt. Commun. 283: 3917-3921. https://doi.org/10.1016/j.optcom.2010.06.009

Barrera-Ramírez, J.F., Vargas, C., Tebaldi, M., Torroba, R., Bolognini, N. (2010b). Known plaintext attack on a joint transform correlator encrypting system. Opt. Lett. 35: 3553-3555. https://doi.org/10.1364/OL.35.003553

Barrera-Ramírez, J.F. & Torroba, R. (2010c). One step multiplexing optical encryption. Opt. Commun. 283: 1268-1272. https://doi.org/10.1016/j.optcom.2009.11.083

Barrera-Ramírez, J.F., Rueda, E., Ríos, C., Tebaldi, M., Bolognini, N., Torroba, R. (2011). Experimental opto-digital synthesis of encrypted sub-samples of an image to improve its decoded quality. Opt. Commun. 284: 4350-4355. https://doi.org/10.1016/j.optcom.2011.05.035

Barrera-Ramírez, J.F., Tebaldi, M., Ríos C., Rueda E., Bolognini, N., Torroba R. (2012). Experimental multiplexing of encrypted movies using a JTC architecture. Opt. Express. 20: 3388-3393. https://doi.org/10.1364/OE.20.003388

Barrera-Ramírez, J.F., Mira-Agudelo, A., Torroba, R. (2013a). Optical encryption and QRcodes: Secure and noise-free information retrieval. Opt. Express. 21: 5373-5378. https://doi.org/10.1364/OE.21.005373

Barrera-Ramírez, J.F., Velez-Zea, A., Torroba. R. (2013b). Experimental multiplexing protocol to encrypt text of any length. J. Opt. 15: 055404. https://doi.org/10.1088/2040-8978/15/5/055404

Barrera-Ramírez, J.F., Trejos, S., Tebaldi, M., Torroba. R. (2013c). Experimental protocol for packaging and encrypting multiple data. J. Opt. 15: 055406. https://doi.org/10.1088/2040-8978/15/5/055406

Barrera-Ramírez, J.F., Mira-Agudelo, A., Torroba, R. (2014a). Experimental QR code optical encryption: noise-free data recovering. Opt. Lett. 39: 3074-3077. https://doi.org/10.1364/OL.39.003074

Barrera-Ramírez, J.F. Velez-Zea, A., Torroba, R. (2014b). Experimental scrambling and noise reduction applied to the optical encryption of QR codes. Opt. Express. 22: 20268-20277. https://doi.org/10.1364/OE.22.020268

Barrera-Ramírez, J.F., Mira-Agudelo A., Torroba, R. (Diciembre 18, 2015a). Aparato ópticofísico y procedimientos para la encriptación y recuperación de información libre de ruido. Patente de invención 14 98035.

Barrera-Ramírez, J.F. & Torroba, R. (2015b). Encriptación óptica de información con recuperación libre de ruido. Rev. Acad. Colomb. Cienc. Ex. Fis. Nat. 39: 48-54. https://doi.org/10.18257/raccefyn.259

Barrera-Ramírez, J.F., Jaramillo-Osorio, A., Velez-Zea, A., Torroba, R. (2016). Experimental analysis of a joint free space cryptosystem. Opt. Lasers Eng. 83: 126-130. https://doi.org/10.1016/j.optlaseng.2016.03.010

Blau, Y., Bar-On, O., Hanein, Y., Boag, A., Scheuer, J. (2020). Meta-hologram-based authentication scheme employing a speckle pattern fingerprint. Opt. Express. 28: 8924-8936. https://doi.org/10.1364/OE.388233

Carnicer, A., Hassanfiroozi, A., Latorre-Carmona, P., Huang, Y.P, Javidi, B. (2015). Security authentication using phase-encoded nanoparticle structures and polarized light. Opt. Lett. 40:135-138. https://doi.org/10.1364/OL.40.000135

Carnicer, A. & Javidi, B. (2017). Optical security and authentication using nanoscale and thin-film structures. Adv. Opt. Photon. 9: 218-256. https://doi.org/10.1364/AOP.9.000218

Chen, J., Bao, N., Zhang, L.Y., Zhu, Z. (2018). Optical information authentication using optical encryption and sparsity constraint. Opt. Lasers Eng. 107: 352-363. https://doi.org/10.1016/j.optlaseng.2018.04.0

Chen, L. & Zhao, D. (2006). Optical image encryption with Hartley transforms. Opt. Lett. 31: 3438-3440. https://doi.org/10.1364/ol.31.003438

Chen, W., Javidi, B., Chen, X. (2014). Advances in optical security systems. Adv. Opt. Photon. 6:120-155. https://doi.org/10.1364/AOP.6.000120

Cheremkhin, P.A., Krasnov, V.V., Rodin, V.G., Starikov, R.S. (2017). QR code optical encryption using spatially incoherent illumination. Laser Phys. Lett. 14: 026202. https://doi.org/10.1088/1612-202X/aa5242

Cheremkhin, P.A., Evtikhiev, N.N., Krasnov, V.V., Rodin, V.G., Ryabcev, I.P., Shifrina, A.V., Starikov, R.S. (2021a). Lensless optical encryption with speckle-noise suppression and QR codes. Appl. Opt. 60: 7336-7345. https://doi.org/10.1364/AO.430968

Cheremkhin, P.A., Evtikhiev, N.N., Krasnov, V.V., Ryabcev, I.P., Shifrina, A.V., Starikov., R.S. (2021b). New customizable digital data container for optical cryptosystems. J. Opt. 23: 115701. https://doi.org/10.1088/2040-8986/ac2166

Dou, S., Shen, X., Zhou, B., Lin, C., Lin, Y., Cheng, Y. (2019). Security-enhanced nonlinear cryptosystem based on joint transform correlator. Opt. Commun. 445: 211-221. https://doi.org/10.1016/j.optcom.2019.04.011

Evtikhiev, N.N., Krasnov, V.V., Kuzmin, I.D., Molodtsov, D.Y., Rodin, V.G., Starikov, R.S., Cheremkhin, P.A. (2020). QR-code optical encryption in the scheme with spatially incoherent illumination based on two micromirror light modulators. Quantum Electron. 50: 195-196. https://doi.org/10.1070/QEL17139

Françon, M. (1975). Information processing using speckle patterns. En Dainty, C. Laser speckle and related phenomena (183-185). New York, Estados Unidos: Springer-Verlag Berlin Heidelberg.

Goodman, J.W. (1996). Introduction to Fourier Optics (232-2467) (2da Ed.). New York, Estados Unidos: McGraw-Hill.

Gluckstad, G., Riso, F. (Junio 14, 2005). Optical encryption and decryption method and system. U.S. patent 6907124.}

Graydon, O. (2013). Cryptography: Quick response codes. Nat. Photon. 7: 343. https://doi.org/10.1038/nphoton.2013.127

Hai, H., Pan, S., Liao, M., Lu, D., He, W., Peng, X. (2019). Cryptanalysis of random-phaseencoding-based optical cryptosystem via deep learning. Opt. Express. 27: 21204-21213. https://doi.org/10.1364/OE.27.021204

He, X., Jiang, Z., Kong, Y., Wang, S., Liu, C. (2020). Optical multi-image encryption based on focal length multiplexing and multimode phase retrieval. Appl. Opt. 59: 7801-7812. https://doi.org/10.1364/AO.398459

Henao, R., Rueda, E., Barrera-Ramírez, J.F., Torroba. R. (2010). Noise-free recovery of optodigital encrypted and multiplexed images. Opt. Lett. 35: 333-335. https://doi.org/10.1364/OL.35.000333

Hernández, M., Baquero, L., Gil, C., Cardenas, D.A., Gil, A. (2018). Approach to the State of the Art of Ciberdelincuence in Colombia. Int. J. Appl. Eng. Res. 13: 16648-16655.

International Organization for Standardization-ISO. (2006). IEC 18004. Information technology - Automatic identification and data capture techniques - QR Code 2005 bar code symbology specification. International Organization for Standardization, Geneva, Switzerland.

Jaramillo-Osorio, A., Barrera-Ramírez, J.F., Velez-Zea, A., Torroba, R. (2018). Fractional optical cryptographic protocol for data containers in a noise-free multiuser environment. Opt. Lasers Eng. 102: 119-125. https://doi.org/10.1016/j.optlaseng.2017.10.008

Jaramillo-Osorio, A., Barrera-Ramírez, J.F., Mira-Agudelo, A, Velez-Zea, A., Torroba, R. (2020a). High performance compact optical cryptosystem without reference arm. J. Opt. 22: 035702. https://doi.org/10.1088/2040-8986/ab68f0

Jaramillo-Osorio, A., Mira-Agudelo, A., Velez-Zea, A., Barrera-Ramírez, J.F., Torroba, R. (2020b). Secure selective recovery protocol for multiple optically encrypted data. Opt. Laser Eng. 137: 106383. https://doi.org/10.1016/j.optlaseng.2020.106383

Jaramillo-Osorio, A., Torres-Sepúlveda, W., Velez-Zea, A., Mira-Agudelo, A., Barrera-Ramírez, J.F., Torroba, R. (2022a). Focus-tunable experimental optical cryptosystem. Opt. & Laser Technol. 148: 107689. https://doi.org/10.1016/j.optlastec.2021.107689

Jaramillo-Osorio, A., Velez-Zea, A., Cabrera, H., Niemela, J., Barrera-Ramírez, J.F., Torroba, R. (2022b). Optical encryption using phase modulation generated by thermal lens effect. J. Opt. 24: 025702. https://doi.org/10.1088/2040-8986/ac4412

Javidi, B. (Febrero, 2003). Method and Apparatus for Encryption Using Partial Information. U.S. Patent 6519340 B1.

Javidi, B., Carnicer, A., Yamaguchi, M., Nomura, T., Pérez-Cabré, E., Millán, M.S., Nishchal, N.K., et al. (2016). Roadmap on optical security. J. Opt. 18: 083001. https://doi.org/10.1088/2040-8978/18/8/083001

Javidi, B., Esmail, A., Zhang, G. (Marzo 23, 2010). Optical Security system using Fourier plane encoding. U.S. patent 7684098.

Javidi, B. & Tajahuerce, E. (Mayo 22, 2007). Information security using digital holography. U.S. patent 7221760 B2.

Javidi, B., Towghi, N., Maghzi, N., Verrall S.C. (2000). Error-reduction techniques and error analysis for fully phase- and amplitude-based encryption. Appl. Opt. 39: 4117-4130. https://doi.org/10.1364/AO.39.004117

Javidi, B., Zhang, G., Li, J. (1996). Experimental demonstration of the random phase encoding technique for image encryption and security verification. Opt. Eng. 35: 2506-2512. https://doi.org/10.1117/1.600854

Jiao, S., Gao, Y., Lei, T., Yuan, X. (2020). Known-plaintext attack to optical encryption systems with space and polarization encoding. Opt. Express. 28: 8085-8097. https://doi.org/10.1364/OE.387505

Jiao, S., Zhou, C., Shi, Y., Zou, W., Li, X. (2019). Review on optical image hiding and watermarking techniques. Opt. Laser Technol. 109: 370-380. https://doi.org/10.1016/j.optlastec.2018.08.011

Kafri, O. & Keren, E. (1987). Encryption of pictures and shapes by random grids. Opt. Lett. 12: 377-379. https://doi.org/10.1364/OL.12.000377

Karimi, N., Basu, K., Chang, C.H., Fung, J.M. (2021). Hardware Security in Emerging Technologies: Vulnerabilities, Attacks, and Solutions. IEEE Trans. Emerg. Sel. Topics Circuits Syst. 11: 223-227. https://doi.org/10.1109/JETCAS.2021.3084498

Kaur, M., Singh, S., Kaur, M. (2021). Computational Image Encryption Techniques: A Comprehensive Review. Math. Probl. Eng. 2021: 5012496. https://doi.org/10.1155/2021/5012496

Kumar, A. & Nishchal, N. (2019). Quick response code and Interference-based optical asymmetric cryptosystem. J. Inf. Secur. Appl. 45: 35-43. https://doi.org/10.1016/j.jisa.2019.01.004

Kwok, S.K., Ting, J.S.L., Tsang, A.H.C., Lee, W.B., Cheung, B.C.F. (2010). Design and development of a mobile EPC-RFID-based self-validation system (MESS) for product authentication. Comput. Ind. 61: 624-35. https://doi.org/10.1016/j.compind.2010.02.001

Lázaro, J., Astarloa, A., Rodríguez, M., Bidarte, U., Jiménez, J. (2021). A Survey on Vulnerabilities and Countermeasures in the Communications of the Smart Grid. Electronics. 10:1881. https://doi.org/10.3390/electronics10161881

Li, H., Guo, C., Muniraj, I., Schroeder, B.C., Sheridan, J.T., Jia, S. (2017a). Volumetric Lightfield Encryption at the Microscopic Scale. Sci. Rep. 7: 40113. https://doi.org/10.1038/srep40113

Li, L., Jun Cui, T., Ji, W., et al. (2017b). Electromagnetic reprogrammable coding-metasurface holograms. Nat. Commun. 8: 197. https://doi.org/10.1038/s41467-017-00164-9

Li, W.S., Shen, Y., Chen, Z.J., Cui, Q., Li, S.S., Chen, L.J. (2017c). Demonstration of patterned polymer-stabilized cholesteric liquid crystal textures for anti-counterfeiting two-dimensional barcodes. Appl. Opt. 56: 601-606. https://doi.org/10.1364/AO.56.000601

Li, X., Zhao, M., Zhou, X., Wang, Q.H. (2018). Ownership protection of holograms using quick-response encoded plenoptic watermark. Opt. Express. 26: 30492-30508. https://doi.org/10.1364/OE.26.030492

Liang, J., Gao, L., Hai, P., Li, C., Wang, L.V. (2015). Encrypted Three-dimensional Dynamic Imaging using Snapshot Time-of-flight Compressed Ultrafast Photography. Sci. Rep. 5: 15504. https://doi.org/10.1038/srep15504

Liansheng, S., Cong, D., Minjie, X., Ailing, T., Anand. A. (2019). Information encryption based on the customized data container under the framework of computational ghost imaging. Opt. Express. 27: 16493-16506. https://doi.org/10.1364/OE.27.016493

Lim, K.T.P., Liu, H., Liu, Y., Yang, J.K.W. (2019). Holographic colour prints for enhanced optical security by combined phase and amplitude control. Nat. Commun. 10: 25. https://doi. org/10.1038/s41467-018-07808-4

Lima, J.B., Madeiro, F., Sales, F.J.R. (2015). Encryption of medical images based on the cosine number transform. Signal Process. Image Commun. 35: 1-8. https://doi.org/10.1016/j.image.2015.03.005

Lin, C., Shen, X., Hua, B., Wang, Z. (2015). Three-dimensional polarization marked multiple-QR code encryption by optimizing a single vectorial beam. Opt. Commun. 352: 25-32. https://doi.org/10.1016/j.optcom.2015.04.068

Liu, S., Guo, C., Sheridan, J.T. (2014). A review of optical image encryption techniques. Opt. Laser Technol. 57: 327-342. https://doi.org/10.1016/j.optlastec.2013.05.023

Liu, Z., Xu, L., Lin, C., Liu, S. (2010). Image encryption by encoding with a nonuniform optical beam in gyrator transform domains. Appl. Opt. 49: 5632-5637. https://doi.org/10.1364/AO.49.005632

Lu, X.J., Yu, F.T.S., Gregory, D.A. (1990). Comparison of Vander Lugt and joint transform correlators. Appl. Phys. B. 51: 153-164. https://doi.org/10.1007/BF00326017

Markman, A., Wang, J., Javidi, B. (2014). Three-dimensional integral imaging displays using a quick-response encoded elemental image array. Optica. 1: 332-335. https://doi.org/10.1364/OPTICA.1.000332

Meng, F., Umair, M.M., Zhang, S, Meng, Y., Tang, B. (2021a). Facile fabrication of encryption composite materials with trilayer quasi-amorphous heterostructure. Sci China Mater. 64:909-919. https://doi.org/10.1007/s40843-020-1500-9

Meng, Y., Chen, Y., Lu, L., et al. (2021b). Optical meta-waveguides for integrated photonics and beyond. Light Sci. Appl. 10: 235. https://doi.org/10.1038/s41377-021-00655-x

Millán, M.S. (2012). Advanced optical correlation and digital methods for pattern matching-50th anniversary of Vander Lugt matched filter. J. Opt. 14: 10300. https://doi.org/10.1088/2040-8978/14/10/103001

Mosso, F., Tebaldi, M., Barrera-Ramírez, J.F., Bolognini, N., Torroba, R. (2011a). All-optical encrypted movie. Opt. Express. 19: 5706-5712. https://doi.org/10.1364/OE.19.005706

Mosso, F., Tebaldi, M., Barrera-Ramírez, J.F., Bolognini, N., Torroba, R. (2011b). Pure optical dynamical color encryption. Opt. Express. 19: 13779-13786. https://doi.org/10.1364/OE.19.013779

Mughaid, A., Al-Arjan, A., Rasmi, M., AlZu’bi, S. (2021). Intelligent security in the era of AI: The key vulnerability of RC4 algorithm. International Conference on Information Technology (ICIT) (691-694). https://doi.org/10.1109/ICIT52682.2021.9491709.

Nomura, T. & Javidi B. (2000). Optical encryption using a joint transform correlator architecture. Opt. Eng. 39: 2031-2035. https://doi.org/10.1117/1.1304844

Nomura, T., Pérez-Cabré, E., Millán, M.S., Javidi, B. (2009). Optical Techniques for Information Security. Proc. IEEE. 97: 1128-1148. https://doi.org/10.1109/JPROC.2009.2018367

Paganin, D.M. (2011). Spotlight on Optics: All-optical encrypted movie. Optica Publishing Group. Fecha de consulta: noviembre de 2021. Disponible en: https://www.osapublishing.org/spotlight/summary.cfm?uri=oe-19-6-5706

Peng, X., Zhang, P., Wei, H., Yu, B. (2006). Known-plaintext attack on optical encryption based on double random phase keys. Opt. Lett. 31: 1044-1046. https://doi.org/10.1364/OL.31.001044

Petriashvili, G., Devadze, L., Chanishvili, A., Zurabishvili, C., Sepashvili, N., Ponjavidze, N., De Santo, M.P., Barberi, R. (2018). Spiropyran doped rewritable cholesteric liquid crystal polymer film for the generation of quick response codes. Opt. Mater. Express. 8: 3708-3716. https://doi.org/10.1364/OME.8.003708

Pile, D. (2010). Optical encryption: The ghost holds a secret. Nat. Photon. 4: 587. https://doi.org/10.1038/nphoton.2010.206

Ponjavidze, N., De Santo, M.P., Barberi, R. (2018). Spiropyran doped rewritable cholesteric liquid crystal polymer film for the generation of quick response codes. Opt. Mater. Express. 8:3708-3716. https://doi.org/10.1364/OME.8.003708

Qin, Y., Gong, Q., Wang, H., Wang, Z. (2018a). Authentication-based optical cryptosystem with noise-free information retrieval. Opt. Commun. 426: 325-332. https://doi.org/10.1016/j.optcom.2018.05.079

Qin, Y., Wang, Z., Wang, H., Gong, Q., Zhou, N. (2018b). Robust information encryption diffractive-imaging-based scheme with special phase retrieval algorithm for a customized data container. Opt. Lasers Eng. 105: 118-124. https://doi.org/10.1364/OE.27.016493

Qin., Y. & Zhang, Y. (2017). Information Encryption in Ghost Imaging with Customized Data Container and XOR Operation. IEEE Photon. J. 9: 1-8. https://doi.org/10.1109/JPHOT.2017.2690314

Qu, G., Yang, W., Song, Q., Liu, Y., Qiu, C.W., Han, J., Tsai, D.P., Xiao, S. (2020). Reprogrammable meta-hologram for optical encryption. Nat. Commun. 11: 5484. https://doi.org/10.1038/s41467-018-07808-4

Refregier, P. & Javidi, B. (1995). Optical image encryption based on input plane and Fourier plane random encoding. Opt. Lett. 20: 767-769. https://doi.org/10.1364/OL.20.000767

Reshef, O., DelMastro, M.P., Bearne, K.K.M. et al. (2021). An optic to replace space and its application towards ultra-thin imaging systems. Nat. Commun. 12: 3512. https://doi.org/10.1038/s41467-021-23358-8

Rueda, E., Barrera-Ramírez J.F., Henao, R., Torroba, R. (2009a). Optical encryption with a reference wave in a joint transform correlator architecture. Opt. Commun. 282: 3243-3249. https://doi.org/10.1016/j.optcom.2009.05.022

Rueda, E., Barrera-Ramírez J.F., Henao, R., Torroba, R. (2009b). Lateral shift multiplexing with a modified random mask in a joint transform correlator encrypting architecture. Opt. Eng. 48: 27006. https://doi.org/10.1117/1.3080753

Saini, N. & Sinha, A. (2015). Video encryption using chaotic masks in joint transform correlator. J. Opt. 17: 035701. https://doi.org/10.1088/2040-8978/17/3/035701

Shi, X. & Zhao, D. (2011). Color image hiding based on the phase retrieval technique and Arnold transform. Appl. Opt. 50: 2134-2139. https://doi.org/10.1364/AO.50.002134

Singh, M., Kumar, A., Singh, K. (2008). Multiplexing in optical encryption by using an aperture system and a rotating sandwich random phase diffuser in the Fourier plane. Opt. Lasers Eng. 46: 243-251. https://doi.org/10.1016/j.optlaseng.2007.10.001

Singh, M., Kumar, A., Singh, K. (2009). Encryption and decryption using a sandwich phase diffuser made by using two speckle patterns and placed in the Fourier plane: Simulation results. Optik. 120: 916-922. https://doi.org/10.1016/j.ijleo.2008.03.025

Situ, G. & Zhang, J. (2005). Multiple-image encryption by wavelength multiplexing. Opt. Lett. 30: 1306-1308. https://doi.org/10.1364/OL.30.001306

Sui, L., Xu, M., Tian, A. (2017). Optical noise-free image encryption based on quick response code and high dimension chaotic system in gyrator transform domain. Opt. Laser Eng. 91: 106-114. https://doi.org/10.1364/AO.59.000474

Tanha, M., Kheradmand, R., Ahmadi-Kandjani, S. (2012). Gray-scale and color optical encryption based on computational ghost imaging. Appl. Phys. Lett. 101: 28-31. https://doi.org/10.1063/1.4748875

Tebaldi M., Horrillo, S., Pérez-Cabré, E., Millán, M.S., Amaya, D., Torroba. R. et al. (2011). Experimental color encryption in a joint transform correlator architecture. J. Phys. Conf. Ser. 274: 012054. https://doi.org/10.1088/1742-6596/274/1/012054

Ting, S.L. & Tsang, A.H.C. (2013). A two-factor authentication system using Radio Frequency Identification and watermarking technology. Comput. Ind. 64: 268-79. https://doi.org/10.1016/j.compind.2012.11.002

Torroba, R. & Barrera-Ramírez, J.F. (2015). Protección de datos usando un sistema experimental de encriptación de correlador de transformada conjunta. Rev. Acad. Colomb. Cienc. Ex. Fis. Nat. 39: 55-60. https://doi.org/10.18257/raccefyn.263

Treacy, S. (2013). The creative power of Colaboration. The world Academy of Sciences TWAS. Fecha de consulta: noviembre de 2021. Disponible en: https://twas.org/article/creativepower-collaboration

Trejos, S., Barrera-Ramírez, J.F., Torroba, R. (2015). Optimized and secure technique for multiplexing QR code images of single characters: Application to noiseless messages retrieval. J. Opt. 17: 085702. https://doi.org/10.1088/2040-8978/17/8/085702

Unnikrishnan, G., Joseph, J., Singh, K. (1998). Optical encryption system that uses phase conjugation in a photorefractive crystal. Appl. Opt. 31: 8181-8186. https://doi.org/10.1364/AO.37.008181

Vander-Lugt, A. (1964). Signal detection by complex spatial filtering. IEEE Trans. Inf. Theory. 10:139-145. https://doi.org/10.1109/TIT.1964.1053650

Velez-Zea, A., Barrera-Ramírez, J.F., Torroba, R. (2016a). Three-dimensional joint transform correlator cryptosystem. Opt. Lett. 41: 599-602. https://doi.org/10.1364/OL.41.000599

Velez-Zea A., Barrera-Ramírez J.F., Torroba, R. (2016b). Customized data container for improved performance in optical cryptosystems. J. Opt. 18: 125702. https://doi.org/10.1088/2040-8978/18/12/125702

Velez-Zea, A., Barrera-Ramírez, J.F., Torroba, R. (2017a). Experimental optical encryption of grayscale information. Appl. Opt. 56: 5883-5889. https://doi.org/10.1364/AO.56.005883

Velez-Zea, A., Barrera-Ramírez, J.F., Torroba, R. (2017b). Innovative speckle noise reduction procedure in optical encryption. J. Opt. 19: 055704. https://doi.org/10.1088/2040-8986/aa6526

Velez-Zea, A., Barrera-Ramírez, J.F., Torroba, R. (2017c). Cryptographic salting for security enhancement of double random phase encryption schemes. J. Opt. 19: 105703. https://doi.org/10.1088/2040-8986/aa8738

Velez-Zea, A., Barrera-Ramírez, J.F., Torroba, R. (2018). Optimized random phase encryption. Opt. Lett. 43: 3558-3561. https://doi.org/10.1364/OL.43.003558

Velez-Zea, A., Barrera-Ramirez, J.F., Torroba, R. (2019). Secure real-time generation and display of color holographic movies. Opt. Lasers Eng. 122: 239-244. https://doi.org/10.1016/j.optlaseng.2019.06.010

Vilardy, J.M., Millán, M.S., Peréz-Cabre, E. (2013). Improved decryption quality and security of a joint transform correlator-based encryption system. J. Opt. 15: 025401. https://doi.org/10.1088/2040-8978/15/2/025401

Vilardy, J.M., Millán, M.S., Pérez-Cabré, E. (2014). Nonlinear optical security system based on a joint transform correlator in the Fresnel domain. Appl. Opt. 53: 1674. DOI: 10.1364/AO.53.001674

Vilardy, J.M., Millán, M.S., Pérez-Cabré, E. (2017). Nonlinear image encryption using a fully phase nonzero-order joint transform correlator in the Gyrator domain. Opt. Lasers Eng. 89: 88-94. https://doi.org/10.1016/j.optlaseng.2016.02.013

Vilardy, J.M., Barba, L., Torres, C.O. (2019a). Image Encryption and Decryption Systems Using the Jigsaw Transform and the Iterative Finite Field Cosine Transform. Photonics. 6: 121 (2019a). https://doi.org/10.3390/photonics6040121

Vilardy, J.M., Pérez, R.A., Torres, C.O. (2019b). Optical Image Encryption Using a Nonlinear Joint Transform Correlator and the Collins Diffraction Transform. Photonics. 6: 115. https://doi.org/10.3390/photonics6040115

Verified Market Research-VMR. Encryption Software Market Size And Forecast to 2025. Fecha de consulta noviembre de 2021. Disponible en: https://www.verifiedmarketresearch.com/product/global-encryption-software-market-size-and-forecast-to-2025/

Wang, C.H., Hwang, Y.S., Wang, H.C., Wang, Y.L, Tsai, K.Y. (2020). Microstructure overlapping image application with optical decryption. J. Opt. Soc. Am. A 37: 1361-1368. https://doi.org/10.1364/JOSAA.393182

Wang, K., Liang, J., Chen, R., Gao, Z., Zhang, C., Yan, Y., Yao, J., Zhao, Y.S. (2021). Geometry-Programmable Perovskite Microlaser Patterns for Two-Dimensional Optical Encryption. Nano Lett. 21: 6792-6799. https://doi.org/10.1021/acs.nanolett.1c01423

Wang, W.C. & Schipf, D.R. (Junio 13, 2019). Fluid-optical encryption system and method thereof. US patent 0182407 A1.

Wang, L., Wu, Q., Situ, G. (2019). Chosen-plaintext attack on the double random polarization encryption. Opt. Express 27: 32158-32167. https://doi.org/10.1364/OE.27.032158

Wang, Q., Rogers, E., Gholipour, B. et al. (2016). Optically reconfigurable metasurfaces and photonic devices based on phase change materials. Nat. Photon. 10: 60-65. https://doi.org/10.1038/nphoton.2015.247

Weaver, C.S., Goodman, J.W. (1966). A Technique for Optically Convolving Two Functions. Appl. Opt. 5: 1248-1249. https://doi.org/10.1364/AO.5.001248

Wu, H., Li, Q., Meng, X., Yang, X., Liu, S., Yin, Y. (2021). Cryptographic analysis on an optical random-phase-encoding cryptosystem for complex targets based on physics-informed learning. Opt. Express. 29: 33558-33571. https://doi.org/10.1364/OE.441293

Wu, J., Wang, J., Nie, Y., Hu. L. (2019). Multiple-image optical encryption based on phase retrieval algorithm and fractional Talbot effect. Opt. Express. 27: 35096-35107. https://doi.org/10.1364/OE.27.035096

Yan, A., Lu, C., Yu, J., Tang, M., Dong, J., Hu, Z., Zhang, H. (2019). Multiple-image encryption based on angular-multiplexing holography with quick response code and spiral phase keys. Appl. Opt. 58: G6-G10.

Yong-Liang, X., Xin, Z., Sheng, Y., Qiang, L., Yang-Cong, L. (2009). Multiple-image optical encryption: an improved encoding approach.Appl. Opt. 48: 2686-2692. https://doi.org/10.1364/AO.48.002686

Zhang, L., Wang, Y., Li, D-H, Li, Q., Zhao, W., Li, X. (2021). Cryptanalysis for a light-field 3D cryptosystem based on M-cGAN. Opt. Lett. 46: 4916-4919. https://doi.org/10.1364/OL.436049

Zhang, L., Wang, Y., Zhang, D. (2022). Research on multiple-image encryption mechanism based on Radon transform and ghost imaging. Opt. Commun. 504: 127494. https://doi.org/10.1016/j.optcom.2021.127494

Zhong, Z., Zhang, Y., Shan, M., Wang, Y., Zhang, Y., Xie, H. (2014). Optical movie encryption based on a discrete multiple-parameter fractional Fourier transform. J. Opt. 16: 125404. https://doi.org/10.1088/2040-8978/16/12/125404

Zhou, N., Li, H., Wang, D., Pan, S., Zhou, Z. (2015). Image compression and encryption scheme based on 2D compressive sensing and fractional Mellin transform. Opt. Commun. 343: 10-21. https://doi.org/10.1016/j.optcom.2014.12.084

Zhu, L., Wang, A., Deng, M., Lu, B., Guo, X. (2021). Experimental demonstration of multiple dimensional coding decoding for image transfer with controllable vortex arrays. Sci. Rep. 11: 12012. https://doi.org/10.1038/s41598-021-91553-0

Zhu, Y., Xu, W., Shi, Y. (2019). High-capacity encryption system based on single-shotptychography encoding and QR code. Opt. Commun. 435: 426-432. https://doi.org/10.1016/j.optcom.2018.11.040

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.

Derechos de autor 2022 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales