Suitable climatic area for three species of Phlegmariurus (Lycopodiaceae) in Cuba: potential distribution and priority areas for conservation
PDF (Español (España))

How to Cite

Salazar-Quevedo, R., Cabrera-Guerrero , A. ., Muñoz-Li, R. R. ., & Jover-Capote, A. . (2023). Suitable climatic area for three species of Phlegmariurus (Lycopodiaceae) in Cuba: potential distribution and priority areas for conservation. Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 47(182), 122–134. https://doi.org/10.18257/raccefyn.1719

Downloads

Download data is not yet available.

Métricas Alternativas


Dimensions

Abstract

Climate change constitutes a threat to biodiversity. The geographical distribution and dimension of the effects of climate change on individuals and ecosystems are uncertain, being the mountainous ecosystems more sensitive to climate In this study, we determined the suitable potential climatic area for Phlegmariurus acerosus, P. taxifolius, and P. reflexus, which inhabit humid and very humid subtropical forests and have some category of threat due to habitat fragmentation and the continuous decrease in populations. We developed climate niche models in the MaxEnt software using occurrence data and bioclimatic variables. We projected the resulting models geographically according to current climatic conditions. The projections showed that the climatic conditions suitable for the species are distributed in the mountains of eastern Cuba. The potential climatic niche has a high probability of presence: 250.66 km2 for P. acerosus, 393.42 km2 for P. taxifolius, and 232.40 km2 for P. reflexus. The protected areas considered a priority for conservation are nine for P. acerosus and P. reflexus, and five for P. taxifolius. Our projections were determined by elevation and seasonal temperature. The priority areas for conservation of the species corresponded to the protected areas present in the Nipe-Sagua-Baracoa and Sierra Maestra Mountain ranges, the latter being the most important for the taxa.

https://doi.org/10.18257/raccefyn.1719

Keywords

Pteridophytes | Climate | Climate niche modeling | Distribution | Threatened species
PDF (Español (España))

References

Alsos, I. G., Alm, T., Normand, S., Brochmann, C. (2009). Past and future range shifts and loss of diversity in dwarf willow (Salix herbacea L.) inferred from genetics, fossils and modelling. Global Ecology and Biogeography, 18, 223-239. https://doi.org/10.1111/j.1466-8238.2008.00439.x

ANPP. (2010). Ley No. 110 “Modificativa de la Ley No. 1304 de 3 de julio de 1976 de la División Político-Administrativa”, de fecha 1 de agosto de 2010. Gaceta Oficial de La República de Cuba, (Extraordinaria: 139-140), de fecha 2 de septiembre de 2010.

Araújo, M.B., New, M. (2007). Ensemble forecasting of species distributions. Trends in Ecology & Evolution, 22, 42-47. https://doi.org/10.1016/j.tree.2006.09.010

Armenta-Montero, S., Carvajal-Hernández, C.I., Ellis, E.A., Krömer, T. (2015). Distribution and conservation status of Phlegmariurus (Lycopodiaceae) in the state of Veracruz, Mexico. Tropical Conservation Science, 8(1), 114-137

Aroca-González, B.D., Gradstein, R., González-Nieves, L.M. (2021). ¿En peligro o no? Distribución potencial de la hepática Pleurozia paradoxa en Colombia. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 45(174), 260-271.

Borhidi, A., Muñiz, O. (1986). The phytogeographic survey of Cuba. II. Floristic relationships and phytogeographic subdivision. Acta Botanica Hungarica, 32(1), 3-48.

Botanic Garden, Botanical Museum Berlin. (2017). Herbarium Berolinense, Berlin (B). Broennimann, O., Thuiller, W., Hughes, G., Midgley, G. F., Alkemades, J. M. R., Guisan, A. (2006). Do geographic distribution, niche property and life form explain plants vulnerability to global change? Global Change Biology, 12, 1079‐1093.

Brouillet, L., Sinou, C. (2021). Marie-Victorin Herbarium (MT) - Plantes vasculaires. Université de Montréal Biodiversity Centre.

Caluff, M.G., Sánchez, C.V., Shelton, G. (2008). Helechos y plantas afines (Pteridophyta) de Cuba. I. Fitogeografía. Revista Del Jardín Botánico Nacional, 21-49.

Cameron, E., Auckland Museum AM. (2022). Auckland Museum Botany Collection. Auckland War Memorial Museum. Occurrence Dataset. https://doi.org/10.15468/mnjkvv accessed via GBIF.org on 2022-04-15.

Capote, R.P., Berazaín, R. (1984). Clasificación de las formaciones vegetales de Cuba. Revista Del Jardín Botánico Nacional, 5, 27-75. https://doi.org/10.2307/42596743

Cejas, F., Novua, O., Pérez, J. (2007). Modelación del comportamiento de formaciones vegetales cubanas ante un aumento de la temperatura. Acta Botánica Cubana, 198, 21-29.

Cezón, K. (2018). CUBA: Herbario de la Academia de Ciencias, La Habana, Cuba: HAC-Pteridophyta.

Chown, S., Hoffmann, A., Kristensen, T., Angilletta M J, J., Stenseth, N., Pertoldi, C. (2010). Adapting to climate change: a perspective from evolutionary physiology. Clim Res, 43, 3-15. https://doi.org/10.3354/cr00879

Cuéllar, N. (2001). Caracterización del epifitismo vascular de la Región Oriental de Cuba. Trabajo de Diploma. Universidad de Oriente, Santiago de Cuba.

Durán-Puga, N., Loya-Olguín, J.L., Ruiz-Corral, J.A., González-Eguiarte, D.R., García-Paredes, J.D., Martínez-González, S. (2018). Impactos del cambio climático en la distribución potencial de Morus alba L. en México. Revista Mexicana de Ciencias Agrícolas, 13, 2511. https://doi.org/10.29312/remexca.v0i13.475

Elith, J., H. Graham, C., P. Anderson, R., Dudík, M., Ferrier, S., Guisan, A., Hijmans, R.J., Huettmann, F., Leathwick, J. R., Lehmann, A., Li J, Lohmann, L.G., Loiselle, B.A., Manion, G., Moritz, C., Nakamura, M., Nakazawa, Y., Overton, J. McC. M., Townsend Peterson, A., Phillips, S.J., … Zimmermann, N.E. (2006). Novel methods improve prediction of species’ distributions from occurrence data. Ecography, 29, 129-151. https://doi.org/10.1111/j.2006.0906-7590.04596.x

Fick, S.E., Hijmans, R.J. (2017). WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37(12), 4302-4315.

García, R.A., Cabeza, M., Rahbek, C., Araújo, M.B. (2014). Multiple dimensions of climate change and their implications for biodiversity. Science, 344. https://doi.org/10.1126/science.1247579

Gaston, K.J., Jackson, S.F., Nagy, A., Cantú-Salazar, L., Johnson, M. (2008). Protected areas in Europe: Principle and practice. Annals of the New York Academy of Sciences, 1134, 97-119. https://doi.org/10.1196/annals.1439.006

GBIF.org. (2022). Página de Inicio de GBIF. Fecha de consulta: 21 de marzo de 2022. Disponible en: https://www.gbif.org.

Grant, S., von Konrat, M. (2020). Field Museum of Natural History (Botany) Pteridophyte Collection. Fecha de consulta: 21 de marzo de 2022. Disponible en: https://doi.org/10.15468/4nodxs

Hanley, J.A., McNeil, B.J. (1982). The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology, 143(1), 29-36.

Hechavarría, L., Oviedo, R., Holst, B. K. (2002). Epiphytic angiosperms of Cuba. Selbyana, 23(2), 224-244.

Liu, C., Berry, P.M., Dawson, T.P., Pearson, R.G. (2005). Selecting thresholds of occurrence in the prediction of species distributions. Ecography, 28(3), 385-393.

Maciel-Mata, C.A., Manríquez-Morán, N., Octavio-Aguilar, P., Sánchez-Rojas, G. (2015). El área de distribución de las especies: revisión del concepto. Acta Universitaria, 25(2), 3-19. https://doi.org/10.15174/au.2015.690

Martínez-Quintero, B., Echeverri Rubio, A., Gaviria, F. (2017). Potential distribution of Oxysternon conspicillatum (Weber, 1801) in different climate change scenarios in Colombia. Boletin Cientifico del Centro de Museos, 21(2),. https://doi.org/10.17151/bccm.2017.21.2.13

Molina, C., Castillo, A., Samaniego, H. (2018). Evaluación del nicho ambiental de Lycalopex fulvipes (zorro de Darwin) y la incidencia del cambio climático sobre su distribución geográfica. Gayana, 82(1). https://doi.org/10.4067/s0717-65382018000100065

Morejón, R., Sánchez, C., Regalado, L., Hernández, A., Daniel, A. (2020). CUBA: Herbario del Jardín Botánico Nacional, La Habana, Cuba: HAJB-Pteridophyta. https://doi.org/10.15468/5gpcoo

Morueta-Holme, N., Fløjgaard C., Svenning, J.C. (2010). Climate change risks and conservation implications for a threatened small-range mammal Species. PLoS ONE, 5(4), 1-12.

Natural History Museum. (2022). Natural History Museum (London) Collection Specimens. https://doi.org/10.5519/0002965

Øllgaard, B. (2012). New combinations in neotropical Lycopodiaceae. Phytotaxa, 57, 10-22.

Orrell T. Informatics Office. (2021). NMNH Extant Specimen Records (USNM, US). https://doi.org/10.15468/hnhrg3

Pearson, R.G., Raxworthy, C. J., Nakamura, M., Peterson, A.T. (2007). Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. Journal of Biogeography, 34(1), 102-117.

Peterson, A., Soberon, J., Pearson, R.G., Anderson, R.P., Martínez-Meyer, E., Nakamura, M., Bastos-Araujo, M. (2011). Ecological niches and geographic distributions. Choice Reviews Online, 49(11), 49-6266-49–6266. https://doi.org/10.5860/choice.49-6266

Peterson, A.T., Soberón, J., Pearson, R.G., Anderson, R.P., Martínez-Meyer, E., Nakamura, M., Araújo, M. B. (2011). Ecological niches and geographic distributions (MPB-49). Princeton University Press.

Phillips, S. J. (2005). A brief tutorial on Maxent. AT&T Research, 190(4), 231-259. Phillips, S.J., Anderson, R.P., Schapire, R.E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190, 231-259. https://doi.org/10.1016/j.ecolmodel.2005.03.026

QGIS Development Team. (2017). Geographic Information System. Open Source Geospatial Foundation Project.

R Core Team. (2018). R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria.

Ramírez, J., Tulig, M., Watson, K., Thiers, B. (2021). The New York Botanical Garden Herbarium (NY). https://doi.org/10.15468/6e8nje

Reyes, O.J. (2011). Clasificación de la vegetación de la Región Oriental de Cuba. Revista Del Jardín Botánico Nacional, 32-33, 59-71.

Reyes, O.J. (2012). Zonas emergidas en Cuba Oriental, su influencia en la flora cubana. Revista Del Jardín Botánico Nacional, 32-33, 73-78.

Ricardo, N., Herrera, P.P., Cejas, F., Bastart, J.A., Regalado, T. (2009). Tipos y características de las formaciones vegetales de Cuba. Acta Botánica Cubana, 203, 1-42.

Ryan Shipley, J., Contina, A., Batbayar, N., Bridge, E.S., Peterson, A.T., Kelly, J.F. (2013). Niche conservatism and disjunct populations. The Auk, 130(3), 476-486. https://doi.org/10.1525/auk.2013.12151

Sánchez, C. (2021). Inventario de los licófitos y helechos de Cuba: sinonimia, distribución y estado de conservación. Revista Del Jardín Botánico Nacional, 42, 1-53.

Schaefer, H.C., Jetz, W., Böhning-Gaese, K. (2008). Impact of climate change on migratory birds: Community reassembly versus adaptation. Global Ecology and Biogeography, 17, 38-49. https://doi.org/10.1111/j.1466-8238.2007.00341.x

Soberón, J., Peterson, A. (2005). Interpretation of Models of Fundamental Ecological Niches and Species’ Distributional Areas. Biodiversity Informatics, 2 (January). https://doi.org/10.17161/bi.v2i0.4

Solomon, J., Stimmel, H. (2019). Tropicos Specimen Data. Missouri Botanical Garden. https://doi.org/10.15468/hja69f

Thuiller, W., Thuiller, W., Richardson, D., Pysek, P., Midgley, G., Hughes, G., Rouget, M. (2005). Niche-based modelling as a tool for predicting the risk of alien plant invasions at a global scale. Global Change Biology, 11, 2234-2250. https://doi.org/10.1111/j.1365-2486.2005.01018.x

UNEP-WCMC, IUCN. (2022). Protected Planet: The World Database on Protected Areas (WDPA) [Online]. The World Bank. http://protectedplanet.net/

Vásquez-Morales, S.G., Téllez-Valdés, O., Pineda-López, M. del R., Sánchez-Velásquez, L.R., Flores-Estevez, N., Viveros-Viveros, H. (2014). Effect of climate change on the distribution of Magnolia schiedeana: a threatened species. Botanical Sciences, 92(4), 575-585.

Wilson, R.D., Trueman, J.W.H., Williams, S.E., Yeates, D.K. (2007). Altitudinally restricted communities of Schizophoran flies in Queensland’s Wet Tropics: Vulnerability to climate change. Biodiversity and Conservation. 16, 3163–3177. https://doi.org/10.1007/s10531-007-9170-x

WWF. (2018). La vida silvestre en el calentamiento global. Recuperado en marzo de 2018 de wwf.org.uk/wildlife-warming-world

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2023 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales