Theoretical analysis of the incidence of the magnetization vector in the barrier plane on TMR at zero temperature
PDF (Español (España))

How to Cite

Zuñiga, J. A. (2023). Theoretical analysis of the incidence of the magnetization vector in the barrier plane on TMR at zero temperature. Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 47(185), 785–794. https://doi.org/10.18257/raccefyn.1898

Downloads

Download data is not yet available.

Métricas Alternativas


Dimensions

Abstract

In the present work a theoretical analysis of the spin transport in a pseudo spin valve (PSV) heterostructure formed by two ferromagnetic (FM) separated by a semiconductor (SC) is performed. For the SC, the conduction band at the Γ point of the reciprocal space and the spin-orbit coupling (SOC) are considered; for the FM electrodes, the internal exchange energy ( j) and a spontaneous magnetization are taken into account. An analytical expression for the transmission probability as a function of the magnetization director vector (n j) was obtained. In addition, the tunneling magnetoresistance (TMR) at T = 0 K dependent on the SC thickness was calculated using the formula of Landauer B¨uttiker for a channel and it is observed that it obtains its maximum value when the direction nl (fixed) is parallel to the [0 1 0] axis. Moreover, when applying the proposed physicomathematical model to the Fe/SC/Fe PSV, with SC such as: GaAs, GaSb and InAs; it was observed that the SOC Dresselhaus does not contribute to the TMR.

https://doi.org/10.18257/raccefyn.1898

Keywords

TMR | magnetization vector | PSV
PDF (Español (España))

References

Bunder, J. E. (2007). Spin-polarized transport in dilute magnetic semiconductor tunnel junctions. Applied Physics Letters, 91(1), 092111/1–3.

Dakhlaoui, H., Nefzi, M., Al-Shameri, N. S., Suwaidan, A. A., Elmobkey, H., Almansour, S., Alnaim, I. (2020). Magnetic field effect on spin-polarized transport in asymmetric multibarrier based on InAs/GaAs/GaSb systems. Physica B: Condensed Matter, 597, 412403/1-7.

Economou, E. N., Soukoulis, C. M. (1981). Static conductance and scaling theory of localization in one dimension. Physical Review Letters, 46(9), 618-621.

Fabian, J., Matos-Abiague, A., Ertler, C., Stano, P., Žutić, I. (2007). Semiconductor Spintronics. Acta Physica Slovaca, 57(4), 1-343.

Ferry, D. K., Goodnick, S. M. (1997). Transport in nanoestructuras (First). Cambrige University Press.

Gani, M., Shah, K. A., Parah, S. A., Misra, P. (2020). Room temperature high giant magnetoresistance graphene based spin valve and its application for realization of logic gates. Physical Letters A, 384, 126171/1-8.

Ju, S., Cai, T.-Y. Y., Guo, G.-Y., Li, Z.-Y. (2008). Theory of tunneling magnetoresistance and tunneling electroresistance in Co/BiFeO3 La2/3Sr1/3MnO3 junctions. Journal of Applied Physics, 104, 053904/1-6.

Kondo, K. (2012). Spin transport in ferromagnet/semiconductor/ferromagnet structures with cubic Dresselhaus spin-orbit-interaction. Journal of Applied Physics, 111, 07C713/1-3.

Kubota, T., Wen, Z., Takanashi, K. (2019). Current-perpendicular-to-plane giant magnetoresistance effects using heusler alloys. Journal of Magnetism and Magnetic Materials, 492, 165667/1–6.

Kumar, M. Y., Kumar, S. G. (2022). FeAl/MgO/FeAl MTJ with enhanced TMR and low resistance area product for MRAM: A first principle study. Micro and Nanostructures ,165, 207192/1-7.

Lu, J.-D., Li, J.-W. (2010). The effects of Dresselhaus and Rasbha spin-orbit interactions on the electron tunneling in a non-magnetic heterostructure. Applied Surface Science, 256, 4027-4030.

Matos-Abiague, A., Fabian, J. (2009). Anisotropic tunneling magnetoresistance and tunneling anisotropic magnetoresistance:spin-orbit coupling in magnetic tunnel junctions. Physical Review B, 79(1), 155303/1-19.

Perel’, V. I., Tarasenko, S. A., Yassievich, I. N., Ganichev, S. D., Belkov, V. V., Prettl, W. (2003). Spin-dependent tunneling through a symmetric semiconductor barrier. Physical Review B, 67, 201304/1-3.

Qi, Y., Xing, D. Y., Dong, J. (1998). Relation between Julliere and Slonczewski models of tunneling magnetoresistance. Physical Review B, 55(5), 2783-2787.

Saffarzadeh, A., Shokri, A. A. (2006). Quantum theory of tunneling magnetoresistance in GaMnAs/GaAs/GaMnAs heterostructures. Journal of Magnetism and Magnetic Materials, 305(1), 141-146.

Shokri, A. A. (2006). Angular dependence of tunneling magnetoresistance in magnetic semiconductor heterostructures. The European Physical Journal B, 50, 475-481.

Slonczewski, J. C. (1989). Conductance and exchange coupling of two ferromagnets separated by a tunneling barrier. Physical Review B, 39(10), 6995-7002.

Takase, K., Duc, L. A., Takiguichi, K., Tanaka, M. (2020). Current-in-plane spin-valve magnetoresistance in ferromagnetic semiconductor (Ga,Fe)Sb heterostructures with high Curie temperature. Applied Physics Letters, 117, 092402/1-5.

Tao, Y. C., Hu, J. G., Liu, H. (2004). Spin-polarized transport in diluted GaMnAs/AlAs/Ga MnAs ferromagnetic semiconductor tunnel junctions. Journal of Applied Physics, 96(1), 498-502.

Wimmer, M., Lobenhofer, M., Moser, J., Matos-Abiague, A., Schuh, D., Wegscheider, W., Fabian, J., Richter, K., Weiss, D. (2009). Orbital effects on tunneling anisotropic magnetoresistance Fe/GaAs/Au junctions. Physical Review B, 80, 121301(R)1-4.

Yang, X., Gu, R. Y., Xing, D. Y.,Wand, Z. D., Jinming-Dong. (1997). Tunneling magnetoresistance in ferromagnet/insulator/ferromagnet junctions. International Journal of Modern Physics B,11(28), 3375-3384.

Zenger, M., Moser, J., Wegscheider, W., Weiss, D. (2004). High-field magnetoresistance of Fe/GaAs/Fe tunnel junctions. Journal of Applied Physics, 96(4), 2400-2402.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2023 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales