Chaos in the Diamond-Shaped Billiard with Rounded Crown
PDF

How to Cite

Salazar, R. P., Téllez, G., Jaramillo, D. F., & González, D. L. (2015). Chaos in the Diamond-Shaped Billiard with Rounded Crown. Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 39(151), 152–170. https://doi.org/10.18257/raccefyn.99

Downloads

Download data is not yet available.

Métricas Alternativas


Dimensions

Abstract

We analyse the classical and quantum behaviour of a particle trapped in a diamond shaped billiard. We defined this billiard as a half stadium connected with a triangular billiard. A parameter $\xi$ which gradually change the shape of the billiard from a regular equilateral triangle ($\xi=1$) to a diamond ($\xi=0$) was used to control the transition between the regular and chaotic regimes. The classical behaviour is regular when the control parameter $\xi$ is one; in contrast, the system is chaotic when $\xi \neq 1$ even for values of $\xi$ close to one. The entropy grows fast as $\xi$ is decreased from 1 and the Lyapunov exponent remains positive for $\xi<1$. The Finite Difference Method was implemented in order to solve the quantum problem. The energy spectrum and eigenstates were numerically computed for different values of the control parameter. The nearest-neighbour spacing distribution is analysed as a function of $\xi$, finding a Poisson and a Gaussian Orthogonal Ensemble (GOE) distribution for regular and chaotic regimes respectively. Several scars and bouncing ball states are shown with their corresponding classical periodic orbits. Along the document the classical chaos identifiers are computed to show that system is chaotic. On the other hand, the quantum counterpart is in agreement with the Bohigas-Giannoni-Schmit conjecture and exhibits the standard features for chaotic billiard such as the scarring of the wavefunction. © Acad. Colomb. Cienc. Ex. Fis. Nat.  2015.

https://doi.org/10.18257/raccefyn.99
PDF

References

B. Dietz, T. Friedrich, M. Miski-Oglu, A. Richter, and F. Schfer. (2007) Spectral properties of Bunimovich mushroom billiards. Phys. Rev. E, 75, 035203.

B. Dietz, T. Friedrich, M. Miski-Oglu, A.Richter, T. H. Seligman, and K. Zapfe. (2006).Nonperiodic echoes from mushroom billiard hats. Phys. Rev. E, 74, 056207.

T. Miyaguchi. (2007). Escape time statistics for mushroom billiards. Phys. Rev. E, 75, 066215.

F. M. de Aguiar. (2008). Quantum properties of irrational triangular billiards Phys. Rev. E, 77, 036201.

T. Araújo Lima, S. Rodríguez-Pérez, and F. M. de Aguiar. (2013). Ergodicity and quantum correlations in irrational triangular billiards. Phys. Rev. E, 87, 062902.

T. Araújo Lima and F. M. de Aguiar. (2015). Classical billiards and quantum fluids. Phys. Rev. E, 91, 012923.

V. Lopac, I. Mrkonjíc and D. Radíc. (1999) Electron energy level statistics in graphene quantum dots. Phys. Rev. E, 59, 303.

V. Lopac and A. Simíc. ˇ (2011). Communications in Nonlinear Science and Numerical Simulation, Vol. 16, Issue 1

V. Lopac, I. Mrkonjíc and D. Radíc. (2001). Recurrence of particles in static and time varying oval billiards. Phys. Rev. E, 64, 016214.

V. Lopac, I. Mrkonjíc and D. Radíc. (2002). Phys. Rev. E, 66, 036202.

J. Chen, L. Mohr, Hong-Kun Zhang and engfei Zhang. (2013). Chaos, 23, 043137.

M. Sieber and F. Steiner. (1990). Physica D. Classical and quantum mechanics of a strongly chaotic billiard system. 44.

S. Ree and L. E. Reichl. (1999). Phys. Rev. E, 60, 1607.

T. Szeredi and D. A. Goodings. (1993). Classical and quantum chaos of the wedge billiard. II. Quantum mechanics and quantization rules. Phys. Rev. E, 48, 3529.

T. Szeredi and D. A. Goodings. (1993). Classical and quantum chaos of the wedge billiard. I. Classical mechanics. Phys. Rev. E 48, 3518.

A. Backer, F. Steiner, and P. Stifter. (1995). Phys. Rev. E 52, 2463.

Wenjun Li, L. E. Reichl, and Biao Wu. (2002). Quantum chaos in a ripple billiard. Phys. Rev. E 65, 056220.

A. Kudrolli, S. Sridhar, Akhilesh Pandey and Ramakrishna Ramaswamy. (1994). Signatures of chaos in quantum billiards: Microwave experiments. Phys. Rev. E 49, R11(R)

S. Hemmady, J. Hart, X. Zheng, T. Antonsen, E. Ott and S. Anlage. (2006). Phys. Rev. B, 74, 195326.

S. Schlunk, M. d’Arcy, S. Gardiner, D. Cassettari, R. Godun, and G. Summy. (2003).Phys. Rev. Lett., 90, 054101.

Y. H. Kim, M. Barth, H.J. St¨ockmann. (2002), and J. P. Bird. Phys. Rev. B, 65, 165317.

L. Sirko and P. M. Koch. (1996). Phys. Rev. E 54, R21(R).

K. F. Berggren and Z. Li Ji. (1996). Chaos, 6, 543.

A. Kudrolli, V. Kidambi, and S. Sridhar. (1995). Phys. Rev. Lett., 75, 822.

S. Deus, P. Koch, and L. Sirko. (1995). Phys. Rev. E, 52, 1146.

T. Prosen and M. Robnik. (1993). J. Phys. A: Math. Gen., 26.

O. Bohigas, M.J. Giannoni and C. Schmit. (1981). Phys. Rev. Lett., 52.

T.A. Brody. (1973). Lett. Nuovo Cimento, 7 .

G. Cassati and T. Prosen. (1999). Physica D, 131.

V. Andreev, O. Agam, B. D. Simons, and B. L. Altshuler. (1996). Quantum Chaos, Phys. Rev. Lett. 76, 3947.

M. L. Mehta. (2004). Random Matrices, Academic Press, 2d Ed.

F. Haake. (2010). Quantum Signatures of Chaos. Springer-Verlag Berlin Heidelberg, 3rd Ed.

R. Akis and D. K. Ferry, (1998). Wave Function Scarring Effects in Open Ballistic Quantum Cavities, VLSI Design, 8, 307.

R. Garg. (2008). Analytical and Computational Methods in Electromagnetics, Artech House.

M. Brack, R. Bhaduri. (1997). Semiclassical Physics, Addison-Wesley Publishing Company.

H. Weyl, G¨ottingen Nach. (1911). 110.

H. Weyl. (1946). The Classical Groups: Their Invariants and Representations, Princeton university press.

M. Kac . (1966). Can One Hear the Shape of a Drum?, Amer. Math. Month. 73, 1.

R. W. Robinett. (2003). Quantum mechanics of the two-dimensional circular billiard plus baffle system and half-integral angular momentum, Eur. J. Phys. 24, 231-243

B. Li and B. Hu. (1998). Statistical Analysis of Scars in Stadium Billiard. J. Phys. A: Math. Gen. 31, 483.

H. J. Stockman and D. K. Ferry. (2006). Chaos in Microwave resonators, S´eminaire Poincar´e IX, 1

O. Bohigas, M. J. Giannoni, and C. Schmit. (1984) Characterization of Chaotic Quantum Spectra and Universality of Level Fluctuation Laws, Phys. Rev. Lett. 52, 14.

I. Kosztin and K. Schulten. (1997). Boundary Integral Method for Stationary States of TwoDimensional Quantum Systems, Int. J. Mod. Phys. C 8, 293-325.

S. W. McDonald and A. N. Kaufman. (1979). Spectrum and eigenfunctions for a hamil- tonian with stochastic trajectories, Phys. Rev. Lett. 42, 1189.

E. J. Heller. (1984) .Bound-State Eigenfunctions of Classically Chaotic Hamiltonian Systems: Scars of Periodic Orbits. Phys. Rev. Lett. 53, 1515.

D. A. Wisniacki, E. G. Vergini, H. M. Pastawski, and F. M. Cucchietti. (2002). Sensitivity to perturbations in a quantum chaotic billiard, Phys. Rev. E 65, 055206(R).

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2015 Journal of the Colombian Academy of Exact, Physical and Natural Sciences