MODELOS EXACTAMENTE SOLUBLES EN MECÁNICA ESTADÍSTICA DE SISTEMAS DE COULOMB
PDF

Cómo citar

Téllez, G. (2023). MODELOS EXACTAMENTE SOLUBLES EN MECÁNICA ESTADÍSTICA DE SISTEMAS DE COULOMB. Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 37(142), 57–70. https://doi.org/10.18257/raccefyn.37(142).2013.2535

Descargas

Los datos de descargas todavía no están disponibles.

Métricas Alternativas


Dimensions

Resumen

Se presenta una revisi´on de modelos exactamente solubles de f´ısica estad´ıstica cl´asica en dos dimensiones de sistemas de Coulomb, que son sistemas compuestos por un gran n´umero de part´ıculas cargadas el´ectricamente. En especial se estudian el plasma de dos componentes y el plasma de un componente. Se exploran las analog´ıas que hay entre estos sistemas de f´ısica estad´ıstica cl´asica con teor´ıas de campo cu´anticas, que permiten su resoluci´on anal´ıtica. Para el plasma de un componente se presentan algunos resultados nuevos para la energía libre de este sistema.

https://doi.org/10.18257/raccefyn.37(142).2013.2535

Palabras clave

F´ısica estad´ıstica | modelos exactos | electrost´atica
PDF

Citas

[Brydges, Martin 1999] D. C. Brydges and Ph. A. Martin, “Coulomb systems at low density: A review”, J. Stat. Phys. 96, 1163 (1999).

[Bernevig, Haldane 2008] B. A. Bernevig, F. D. M. Haldane, “Model fractional quantum Hall states and Jack polynomials”, Phys. Rev. Lett. 100, 246802 (2008).

[Bernevig, Regnault 2009] B. A. Bernevig, N. Regnault, “Anatomy of abelian and non-abelian fractional quantum Hall states”, Phys. Rev. Lett. 103 206801 (2009).

[Caillol 1981] J. M. Caillol, “Exact results for a two-dimensional one-component plasma on a sphere”, J. Physique – Lettres 42, L-245 (1982).

[Chapman 1913] D. L. Chapman, “A contribution to the theory of electrocapillarity”, Philos. Mag. 25 475 (1913).

[Coleman 1975] S. Coleman, “Quantum sine–Gordon equation as the massive Thirring model”, Phys. Rev. D 11, 2088 (1975).

[Cornu, Jancovici 1989] F. Cornu, B. Jancovici, “The electrical double layer: A solvable model”, J. Chem. Phys. 90, 2444

[Dashen, Hasslacher, Neveu, 1975] R. F. Dashen, B. Hasslacher, A. Neveu, “Particle spectrum in model field theories from semiclassical functional integral techniques”, Phys. Rev. D 11, 3424 (1975).

[Debye, H¨uckel 1923] P. Debye, E. H¨uckel, “The theory of electrolytes. I. Lowering of freezing point and related phenomena”, Phys. Z 24185 (1923).

[Ferrero, T´ellez 2007] A. Ferrero, G. T´ellez, “Two-dimensional two-component plasma with adsorbing impurities”, J. Stat. Phys. 129, 759(2007).

[Forrester 2010] P. J. Forrester, Log-Gases and Random Matrices, Princeton University Press (2010).

[Forrester, Jancovici, T´ellez 1996] P. J. Forrester, B. Jancovici, G. T´ellez, “Universality in some classical Coulomb systems”, J. Stat. Phys. 84, 359 (1996).

[Gaudin 1985] M. Gaudin, “L’isotherme critique d’un plasma sur r´eseau (β = 2, d = 2, n = 2)”, J. Phys. (France) 46, 1027

(1985).[Ginibre 1965] J. Ginibre, “Statistical ensembles of complex, quaternion, and real matrices”, J. Math. Phys. 6, 440 (1965).

[Gouy 1910] G. L. Gouy, “Sur la constitution de la charge ´electrique a la surface d’un ´electrolyte”, J. Phys. 9, 457 (1910).

[Jancovici 1981] B. Jancovici, “Exact results for the two-dimensional one-component plasma”, Phys. Rev. Lett. 46, 386 (1981).

[Jancovici, Manificat, Pisani 1994] B. Jancovici, G. Manificat, C. Pisani, “Coulomb systems seen as critical systems: Finite-size effects in two dimensions”, J. Stat. Phys. 76, 307(1994).

[Jancovici, T´ellez 1996] B. Jancovici, G. T´ellez, “Coulomb systems seen as critical systems: Ideal conductor boundaries” J. Stat. Phys. 82, 609 (1996).

[Jancovici, T´ellez 1998] B. Jancovici, G. T´ellez, “Twodimensional Coulomb systems on a surface of constant negative curvature”, J. Stat. Phys. 91, 953 (1998).

[Kalinay, ˇSamaj 2002] P. Kalinay, L. ˇSamaj, “Thermodynamic properties of the two-dimensional Coulomb gas in the low-density limit”, J. Stat. Phys. 106, 857 (2002).

[Klauder 2011] J. R. Klauder, A modern approach to functional integration, Springer (2011).

[Laughlin 1983] R.B. Laughlin, “Anomalous quantum Hall effect: An incompressible quantum fluid with fractionally charged excitations”, Phys. Rev. Lett. 50, 1395 (1983).

[Lieb, Lebowitz 1972] E. H. Lieb, J. L. Lebowitz, “The constitution of matter: Existence of thermodynamics for systems composed of electrons and nuclei”, Adv. Math. 9, 316 (1972).

[Macdonald 1995] I. G. Macdonald, Hall polynomials and symmetric functions, 2nd ed., Oxford University Press, (1995).

[McCaskill, Fackerell 1988] J. S. McCaskill, E. D. Fackerell, “Painlev´e solution of the Poisson-Boltzmann equation for a cylindrical polyelectrolyte in excess salt solution”, J. Chem. Soc. Faraday Trans. 2, 161 (1988).

[McCoy, Tracy, Wu 1977] B. M. McCoy, C. A. Tracy, T. T. Wu, “Painlev´e functions of the third kind”, J. Math. Phys. 18, 1058 (1977).

[Mehta 1991] M. L. Mehta, Random Matrices, Academic Press, 2nd ed. (1991).

[Onsager 1944] L. Onsager, “Crystal statistics. I. A twodimensional model with an order-disorder transition”, Phys. Rev. 65, 117 (1944).

[ˇSamaj 2003] L. ˇSamaj, “Exact solution of a charge-asymmetric two-dimensional Coulomb gas”, J. Stat. Phys. 111, 261(2003).

[ˇSamaj 2004] L. ˇSamaj, “Is the two-dimensional one-component plasma exactly solvable?”, J. Stat. Phys. 117, 131 (2004).

[ˇSamaj, Jancovici 2002] L. ˇSamaj, B. Jancovici, “Largedistance behavior of particle correlations in the two dimensional two-component plasma”, J. Stat. Phys. 106, 301(2002).

[ˇSamaj, Percus 1995] L. ˇSamaj, J. K. Percus, “A functional relation among the pair correlations of the two-dimensional one-component plasma”, J. Stat. Phys. 80, 811 (1995).

[ˇSamaj, Travˇenec 2000] L. ˇSamaj, I. Travˇenec, “Thermodynamic properties of the two-dimensional two-component plasma”, J. Stat. Phys. 101, 713 (2000).

[Samuel 1978] S. Samuel, “Grand partition function in field theory with applications to sine–Gordon field theory”, Phys. Rev. D 18 1916 (1978).

[T´ellez 1997] G. T´ellez, “Two-component plasma in a gravitational field”, J. Chem. Phys. 106, 8572 (1997).

[T´ellez 2005] G. T´ellez, “Short-distance expansion of correlation functions for charge-symmetric two-dimensional two-component plasma: Exact results”, J. Stat. Mech. : Theory and Experiment, P10001 (2005)

[T´ellez 2006] G. T´ellez, “Charge inversion of colloids in an exactly solvable model”, Europhys. Lett. 76, 1186 (2006).

[T´ellez 2007] G. T´ellez, “Equation of state in the fugacity format for the two-dimensional Coulomb gas”, J. Stat. Phys. 126, 281 (2007).

[T´ellez, Forrester 1999] G. T´ellez, P. J. Forrester, “Exact finite size study of the 2dOCP at Γ = 4 and Γ = 6”, J. Stat. Phys. 97, 489 (1999).

[T´ellez, Forrester 2012] G. T´ellez, P. J. Forrester, “Expanded Vandermonde powers and sum rules for the two-dimensional one-component plasma”, J. Stat. Phys. 148, 824 (2012).

[T´ellez, Merch´an 2002] G. T´ellez, L. Merch´an, “Solvable model for electrolytic soap films: the two-dimensional two-component plasma”, J. Stat. Phys. 108, 495 (2002).

[T´ellez, Trizac 2006] G. T´ellez, E. Trizac, “Exact asymptotic expansions for the cylindrical Poisson-Boltzmann equation”, J. Stat. Mech. P06018 (2006).

[Torres, T´ellez 2004] A. Torres, G. T´ellez, “Finite-size corrections for Coulomb systems in the Debye-Huckel regime”, J. Phys. A: Math. and Gen. 37, 2121 (2004).

[Tracy, Widom 1998] C. A. Tracy, and H. Widom, “Asymptotics of a class of solutions to the cylindrical Toda equations”, Comm. Math. Phys. 190, 697 (1998).

[Tracy, Widom 1997] C A. Tracy, H. Widom, “On exact solutions to the cylindrical Poisson-Boltzmann equation with applications to polyelectrolytes”, Physica A 244, 402 (1997).

[Trizac, T´ellez 2006] E. Trizac, G. T´ellez, “Onsager-Manning Oosawa condensation phenomenon and the effect of salt”, Phys. Rev. Lett. 96, 038302 (2006).

[Trizac, T´ellez 2007] E. Trizac, G. T´ellez, “Preferential interaction coefficient for nucleic acids and other cylindrical polyions”, Macromolecules 40 (4), 1305 (2007).

[Verwey, Overbeek 1948] E. J. W. Verwey, J. T. G. Overbeek Theory of the stability of lyophobic colloids, Elsevier (1948).

[Widom 1997] H. Widom, “Some classes of solutions to the Toda lattice hierarchy”, Comm. Math. Phys. 184, 653 (1997). 84, 161 (1988).

[Zamolodchikov 1995] Al. B. Zamolodchikov, “Mass scale in the sin–Gordon model and its reductions”, Int. J. Mod. Phys. A 10, 1125 (1995).

[Zamolodchikov 1979] A. B. Zamolodchikov, Al. B. Zamolod-chikov, “Factorized S-matrices in two dimensions as the exact solutions of certain relativistic quantum field theory models”, Ann. Phys. 120, 253 (1979)

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.

Derechos de autor 2023 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales