Abstract
We synthesized a new organic polymer whose characteristics allow it to act as an extracting agent for metal ions. Membranes were made from polyvinylchloride (PVC) and 2 nitrophenyl octyl ether plasticizer (NPOE) together with the synthesized polymer and were used to extract gold from aqueous solutions of the metal. Additionally, we added sodium tetraphenylborate (Na-TFB) to improve the ion exchange between the working solution and the manufactured membrane. We determined the composition and membrane thickness showing the highest percentage of gold extraction, as well as the material selectivity towards Au3 + in the presence of other metal ions (Cu2+, Pb2+, Ca2+, Zn2+, Fe3+, Ni2+, and Al3+), each with an initial concentration of 1.4x10-4 M. The results showed percentages close to 80% of the initial content of the solution (1x10-4 M) extracted in one cycle; besides we were able to reuse the same membrane during three cycles without appreciable losses of efficiency.
References
Ata, N., Yazicigil, Z., Oztekin, Y. (2008). The electrochemical investigation of salts partition with ion exchange membranes. Journal of Hazardous Materials. 160 (1): 154-160. Doi: 10.1016/j.jhazmat.2008.02.099
Atia, A. A. (2005). Adsorption of silver(I) and gold(III) on resins derived from bisthiourea and application to retrieval of silver ions from processed photo films. Hydrometallurgy. 80 (1-2): 98-106. Doi: 10.1016/J.HYDROMET.2005.07.004
Benavente, J., Oleinikova, M., Muñoz, M., Valiente, M. (1998). Characterization of novel activated composite membranes by impedance spectroscopy. Journal of Electroanalytical Chemistry. 451 (1-2): 173-180. Doi: 10.1016/S0022-0728(98)00070-9
Braibant, B., Bourgeois, D., Meyer, D. (2018). Three-liquid-phase extraction in metal recovery from complex mixtures. Separation and Purification Technology. 195: 367-376. Doi: 10.1016/J.SEPPUR.2017.12.036
Fotoohi, B. & Mercier, L. (2015). Recovery of precious metals from ammoniacal thiosulfate solutions by hybrid mesoporous silica: 2 - A prospect of PGM adsorption. Separation and Purification Technology. 149: 82-91. Doi: 10.1016/j.seppur.2015.05.020
Fu, F. & Wang, Q. (2011). Removal of heavy metal ions from wastewaters: a review. Journal of Environmental Management. 92 (3): 407-418. Doi: 10.1016/j.jenvman.2010.11.011
Gohil, G. S., Binsu, V. V, Shahi, V. K. (2006). Preparation and characterization of mono-valention selective polypyrrole composite ion-exchange membranes. Journal of Membrane Science. 280 (1-2): 210-218. Doi: 10.1016/j.memsci.2006.01.020
Hilson, G. & Monhemius, A. J. (2006). Alternatives to cyanide in the gold mining industry: what prospects for the future? Journal of Cleaner Production. 14 (12-13): 1158-1167. Doi: 10.1016/J.JCLEPRO.2004.09.005
Hosseini, S. M., Madaeni, S. S., Khodabakhshi, A. R. (2010). Heterogeneous cation exchange membrane: preparation, characterization and comparison of transport properties of mono and bivalent cations. Separation Science and Technology. 45 (16): 2308-2321. Doi: 10.1080/01496395.2010.497792
Judd, S. J. (2017). Membrane technology costs and me. Water Research. 122: 1-9. Doi: 10.1016/j.watres.2017.05.027
Kubota, F., Kono, R., Yoshida, W., Sharaf, M., Kolev, S. D., Goto, M. (2019). Recovery of gold ions from discarded mobile phone leachate by solvent extraction and polymer inclusion membrane (PIM) based separation using an amic acid extractant. Separation and Purification Technology. 214: 156-161. Doi: 10.1016/j.seppur.2018.04.031
Li, J. & Miller, J. (2002). Reaction kinetics for gold dissolution in acid thiourea solution using formamidine disulfide as oxidant. Hydrometallurgy. 63 (3): 215-223. Doi: 10.1016/S0304-386X(01)00212-2
Monier, M., Akl, M. A., Ali, W. M. (2014). Modification and characterization of cellulose cotton fibers for fast extraction of some precious metal ions. International Journal of Biological Macromolecules. 66: 125-134. Doi: 10.1016/j.ijbiomac.2014.01.068
Mora-Tamez, L., Rodríguez de San Miguel, E., Briones-Guerash, U., Munguía-Acevedo, N. M., de Gyves, J. (2014). Semi-interpenetrating hybrid membranes containing ADOGEN® 364 for Cd(II) transport from HCl media. Journal of Hazardous Materials: 280: 603-611. Doi: 10.1016/j.jhazmat.2014.08.056
Song, J., Huang, T., Qiu, H., Niu, X., Li, X. M., Xie, Y., He, T. (2018). A critical review on membrane extraction with improved stability: Potential application for recycling metals from city mine. Desalination. 440: 18-38. Doi: 10.1016/j.desal.2018.01.007
Syed, S. (2012). Recovery of gold from secondary sources-A review. Hydrometallurgy. 115-116: 30-51. Doi: 10.1016/j.hydromet.2011.12.012
Tan, P., Jiang, H. R., Zhu, X. B., An, L., Jung, C. Y., Wu, M. C., … Zhao, T. S. (2017). Advances and challenges in lithium-air batteries. Applied Energy. 204: 780-806. Doi: 10.1016/J.APENERGY.2017.07.054
Tofan, L., Bunia, I., Paduraru, C., Teodosiu, C. (2017). Synthesis, characterization and experimental assessment of a novel functionalized macroporous acrylic copolymer for gold separation from wastewater. Process Safety and Environmental Protection. 106 (2): 150-162. Doi: 10.1016/j.psep.2017.01.002
Villalobos, L. F., Yapici, T., Peinemann, K. V. (2014). Poly-thiosemicarbazide membrane for gold recovery. Separation and Purification Technology. 136: 94-104. Doi: 10.1016/j.seppur.2014.08.027
Wang, D. Q., Zhu, M. L., Xuan, F. Z. (2017). Correlation of local strain with microstructures around fusion zone of a Cr-Ni-Mo-V steel welded joint. Materials Science and Engineering A. 685: 205-212. Doi: 10.1016/j.msea.2017.01.015
Zhang, J., Shen, S., Cheng, Y., Lan, H., Hu, X., Wang, F. (2014). Dual lixiviant leaching process for extraction and recovery of gold from ores at room temperature. Hydrometallurgy. 144-145: 114-123. Doi: 10.1016/j.hydromet.2014.02.001
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright (c) 2020 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales