Effects of temperature on the ferromagnetic resonance of particles: Comparative study for different materials
Portada 43 (168) 2019
PDF (Español (España))
XML (Español (España))

How to Cite

Mercado, C. A. ., Otalora, J. A. ., & Suarez, O. J. (2019). Effects of temperature on the ferromagnetic resonance of particles: Comparative study for different materials. Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 43(168), 375–381. https://doi.org/10.18257/raccefyn.909

Downloads

Download data is not yet available.

Métricas Alternativas


Dimensions

Abstract

In this work, we studied from a theoretical approach, the effect of temperature on the frequency of ferromagnetic resonance of an anisotropic magnetic particle; we analyzed the materials FePt, Co, and Ni. Using the Landau-Lifshitz-Bloch (LLB) equation of motion, we calculated the magnetic susceptibility tensor, which provides information on the absorption power and ferromagnetic resonance of the system. We found that the resonance frequency underwent a shift toward the lower frequency values as the temperature of the material increased. In materials with high anisotropy, the resonance is presented to lower fields. Furthermore, we observed in all materials a decrease in energy absorption as the temperature increased. We concluded that the temperature and the crystalline anisotropy have a strong influence on field values and resonance frequency, as well as on energy absorption.

https://doi.org/10.18257/raccefyn.909

Keywords

Crystalline anisotropy; Ferromagnetic resonance; Landau-Lifshitz Bloch equation.
PDF (Español (España))
XML (Español (España))

References

Anaya-Calvo J. (2013). Transporte térmico y caracterización RAMAN de nanohilos semiconductores de silicio y siliciogermanio. (Tesis Doctoral). Programa de Doctorado en ciencias Físicas, Universidad de Valladolid. Doi: 10.13140/RG.2.1.4775.1760

Atxitia U., Nieves P., and Chubykalo-Fesenko O. (2012). Landau-Lifshitz-Bloch equation for ferrimagnetic materials. Phys. Rev. B 86: 104414. Doi: 10.1103/PhysRevB.86.104414

Cisternas E. & Vogel E. E. (2015). Improving information storage by means of segmented magnetic nanowires. J. Magn. Magn. Mater. 388: 35-39. Doi: 10.1016/j.jmmm.2015.04.020

Cowburn R. P., Koltsov D. K., Adeyeye A. O., Welland M. E., and Tricker D. M. (1999). Single-Domain Circular

Nanomagnets. Phys. Rev. Lett. 83: 1042. Doi: 10.1103/PhysRevLett.83.1042

Curiale C. J. (2008). Nanohilos y nanotubos magnéticos. Preparación, caracterización microestructural y estudio de las propiedades eléctricas y magnéticas. (Tesis Doctoral). Instituto Balseiro, Universidad Nacional de Cuyo. Fecha de consulta: 28 de mayo de 2019. Disponible en: https://www.researchgate.net/publication/43694407_Nanohilos_y_nanotubos_magneticos_Preparacion_caracterizacion_microestructural_y_estudio_de_las_propiedades_electricas_y_magneticas

d'Albuquerque e Castro J., Altbir D., Retamal J. C., and Vargas P. (2002). Scaling Approach to the Magnetic Phase Diagram of Nanosized Systems. Phys. Rev. Lett. 88: 237202. Doi:10.1103/PhysRevLett.88.237202

Díaz de Sihues M., Silva P.J., Fermín J.R., Azevedo A., Rezende S.M., and De Aguiar F.M. (2006). Efecto de la temperatura en la resonancia ferromagnética del Ni50Fe50/Si(001). Rev. Mex. Fís. S52 (3): 143-146. Dispo-nible en: http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0035-001X2006000900041

Dormann J. L., Fiorani D., and Tronc E. (2007). Magnetic Relaxation in Fine‐Particle Systems. Advances in

Chemical Physics (Wiley, Hoboken, NJ), pp. 283-494. Doi:10.1002/9780470141571.ch4

Ellis M. O. A., Ostler T. A., and Chantrell R. W. (2012). Classical spin model of the relaxation dynamics of rare-earth doped permalloy. Phys. Rev. B 86: 174418. Doi: 10.1103/PhysRevB.86.174418

Farle, M. (1998). Ferromagnetic resonance of ultrathin metallic layers. Rep. Prog. Phys. 61: 755. Doi: 10.1088/0034-4885/61/7/001

Forzani L., Gennaro A.M., Bonin C.J., and Koropecki R.R. (2016). Propiedades magnéticas de nanohilos de níquel en matrices de alúmina porosa. Congreso Internacional de Metalurgia y Materiales SAM-CONAMET. Fecha de consulta: 1 de junio de 2019. Disponible en: http://conferencias.unc.edu.ar/index.php/sam2016samconamet2016/paper/viewFile/3030/1272

Garanin, D. A. (1991). Generalized Equation of motion for a ferromagnet. Physica. A 172: 470. Doi: 10.1016/0378-4371(91)90395-S

Garanin, D. A. (1997). Fokker-Planck and Landau-Lifshitz-Bloch equations for classical ferromagnets. Phys. Rev. B 55:3050. Doi: 10.1103/PhysRevB.55.3050

García del Muro y Solans, M. (1997). Propiedades magnéticas de materiales nanoestructurados: vidrios metálicos recristalizados y partículas pequeñas de hexaferrita. (Tesis Doctoral). Departamento de Física, Universidad de Barcelona. Fecha de consulta: 2 de junio de 2019. Disponible en: https://www.tdx.cat/handle/10803/1799

Gupta A. K., and Gupta M. (2005). Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials. 26 (18): 3995-4021. Doi: 10.1016/j.biomaterials.2004.10.012

Haney, P. M. & Stiles M. D. (2009). Magnetic dynamics with spin-transfer torques near the Curie temperature. Phys. Rev. B 80: 094418. Doi: 10.1103/PhysRevB.80.094418

Hinzke, D. & Nowak U. (2011). Domain Wall Motion by the Magnonic Spin Seebeck Effect. Phys. Rev. Lett. 107: 027205. Doi: 10.1103/PhysRevLett.107.027205

Landau, L. D. & Lifshitz, E. M. (1935). On the Theory of the Dispersion of Magnetic Permeability in Ferromagnetic Bodies. Phys. Z. Sowjetunion. 8: 153, reproducido en Collected Papers of L. D. Landau, editado por D. ter Haar (Pergamon, New York), p. 101 (1965). Doi: 10.1016/B978-0-08-036364-6.50008-9

Landeros P., Suarez O. J., Cuchillo A., and Vargas P. (2009). Equilibrium states and vortex domain wall nucleation in ferromagnetic nanotubes. Phys. Rev. B 79: 024404. Doi: 10.1103/PhysRevB.79.024404

Lu A.H., Schmidt W., Matoussevitch N., Bönnemann H., Spliethoff B., Tesche B., Bill E., Kiefer W., and Schüth F. (2004). Nanoengineering of a Magnetically Separable Hydrogenation Catalyst. Angewandte Chemie International Edition. 43 (33): 4303-4306. Doi: 10.1002/anie.200454222

Mayergoyz I. D., Bertotti G., and Serpico C. (2009). Nonlinear Magnetization Dynamics in Nanosystems. Napoli, Italia: Elsevier Science. Fecha de consulta: 1 de junio de 2019. Disponible en: https://www.elsevier.com/books/nonlinear-magnetization-dynamics-in-nanosystems/mayergoyz/978-0-08-044316-4

McDaniel, T. W. (2012). Application of Landau-Lifshitz-Bloch dynamics to grain switching in heat-assisted magnetic recording. J. Appl. Phys. 112: 013914. Doi: https://doi.org/10.1063/1.4733311

Moreno R., Evans R. F. L., Khmelevskyi S., Muñoz M. C., Chantrell R. W., and Chubykalo-Fesenko O. (2016). Temperature-dependent exchange stiffness and domain wall width in Co. Phys. Rev. B 94: 104433. Doi: 10.1103/PhysRevB.94.104433

NielschK., Castaño F. J., Ross C. A., and Krishnan R. (2005). Magnetic properties of template synthesized cobalt/polymer composite nanotubes. J. Appl. Phys. 98: 034318. Doi: 10.1063/1.2005384

Ostler, T. A. & Ellis, M. O. A. (2014). Temperature-dependent ferromagnetic resonance via the Landau-Lifshitz-Bloch equation: Application to FePt. Phys. Rev. B 90: 094402. Doi: 10.1103/PhysRevB.90.094402

Philip J., Shima P. D., and Raj B. (2008). Nanofluid with tunable thermal properties. Applied Physics Letters. 92: 043108. Doi: 10.1063/1.2838304

Philip J., Jaykumar T., Kalyanasundaram P., and Raj B. (2003). A tunable optical filter. Measurement Science & Technology. 14: 1289-1294. Doi: 10.1088/0957-0233/14/8/314

Schieback C., Hinzke D., Kläui M., Nowak U., and Nielaba P. (2009). Temperature dependence of the current-induced domain wall motion from a modified Landau-Lifshitz-Bloch equation. Phys. Rev. B 80: 214403. Doi:10.1103/PhysRevB.80.214403

Schellekens A. J., Deen L., Wang D., Kohlhepp J. T., Swagten H. J. M., and Koopmans B. (2013). Determining the Gilbert damping in perpendicularly magnetized Pt/Co/AlOx films. Appl. Phys. Lett. 102: 082405. Doi: 10.1063/1.4794538

Suarez O. J., Nieves P., Laroze D., Altbir D., and Chubykalo- Fesenko O. (2015). Ultrafast relaxation rates and reversal time in disordered ferrimagnets. Phys. Rev. B 92: 144425. Doi: 10.1103/PhysRevB.92.144425

Suarez O. J., Laroze D., Martínez-Mardones J., Altbir D., and Chubykalo-Fesenko O. (2017). Chaotic dynamics of a magnetic particle at finite temperature. Phys. Rev. B 95:014404. Doi: 10.1103/PhysRevB.95.014404

Suarez O. J., Vargas P., and Vogel E. E. (2009). Energy and force between two magnetic nanotubes. J. Magn. Magn. Mater. 321: 3658-3664. Doi: 10.1016/j.jmmm.2009.07.009

Suarez, O. J., Pérez, L. M., Laroze, D., and Altbir, D. (2012). Magnetostatic interactions in cylindrical nanostructures with non-uniform magnetization. J. Magn. Magn. Mater. 324: 1698-1705. Doi: 10.1016/j.jmmm.2011.12.032

Sultan M., Atxitia U., Melnikov A., Chubykalo-Fesenko O., and Bovensiepen U. (2012). Electron- and phonon-mediated ultrafast magnetization dynamics of Gd(0001). Phys. Rev. B 85: 184407. Doi: 10.1103/PhysRevB.85.184407

Sun, S. (2000). Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287, 1989. Doi:10.1126/science.287.5460.1989

Tarazona-Coronel H. S., Landauro C. V. and Quispe-Marcatoma J. (2014). Resonancia ferromagnética en válvulas de espín: el caso del sistema IrMn(150Å) /Co(50Å) / Ru(32Å) / NiFe(50Å). Revista de Investigación de Física. 17:141702101. https://www.researchgate.net/publication/326391354_Resonancia_ferromagnetica_en_valvulas_de_espin_el_caso_del_sistema_IrMn150ACo50ARu32ANiFe50A

Declaration of originality and transfer author's rights

The authors declare:

  1. The published data and reference materials have been duly identified with their respective credits and have been included in the bibliographic notes and citations that have been so identified and that should it be required, I have all releases and permissions from any copyrighted material. 
  2. All material presented is free from any copyright and that I accept full legal responsibility for any legal claims relating to copyrighted intellectual property, fully exonerating from responsibility the Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales.
  3. This work is unpublished and will not be sent to any other journal while waiting for the editorial decision of this journal. I declare that there is no conflict of interest in this manuscript.
  4. In case of publication of this article, all author´s rights are transferred to the Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, and so cannot be reproduced in any form without the express permission of it.
  5. By means of this document, if the article is accepted for publication by the Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, the Revista assumes the right to edit and publish the articles in national and international indices or data bases for academic and scientific use in paper, electronic, CD-ROM, internet form either of the complete text or any other known form known or to be known and non-commercial, respecting the rights of the authors.

Transfer of author rights

In case the article is approved for publication, the main author in representation of himself and his co-authors or the main author and his co-authors must cede the author rights of the corresponding article to the Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, except in the following cases:

The authors and co-authors will retain the right to revise, adapt, prepare derived works, oral presentations, and distribution to some colleagues of reprints of their own published work, if the corresponding credit is given to the Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales. It is also permissible to publish the title of the work, summary, tables, and figures of the work in the corresponding web sites of the authors or their employers, also giving credit to the Revista.

If the work has been realized under contract, the author’s employer has the right to revise, adapt, prepare derivative works, reproduce, or distribute in hard copy the published work, in a secure manner and for the exclusive use of his employees.

If the Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales were approached for permission by a third party for using, printing, or publishing specifically articles already published, the Revista must obtain the express permission of the author and co-authors of the work or of the employer except for use in classrooms, libraries, or reprinted in a collective work. The Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales reserves the possible use in its front cover of figures submitted with the manuscripts.

No other right, other than the author’s right, can be claimed by the Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales.