Cinnamyl alcohol production from selective hydrogenation of cinamaldehyde using golden catalysts supported on metallic oxides
Portada 43 (168) 2019
PDF (Español (España))
XML (Español (España))

Supplementary Files

Figura S1 (Español (España))
Figura S2 (Español (España))

How to Cite

Rojas , H. A., Martínez, J. J., Brijaldo, M. H., & Passos, F. (2019). Cinnamyl alcohol production from selective hydrogenation of cinamaldehyde using golden catalysts supported on metallic oxides. Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 43(168), 539–549. https://doi.org/10.18257/raccefyn.852

Downloads

Download data is not yet available.

Métricas Alternativas


Dimensions

Abstract

We studied gold catalysts supported on three different metallic oxides as the nature of the support could determine the type of active sites needed to carry out the selective hydrogenation reactions of α,β-unsaturated aldehydes. The hydrogenation of cinammaldehyde was studied as reaction test. The cinnamaldehyde has two preferential adsorption possibilities (vertical atop and planar) and, therefore, if there are charged gold species, the preferential adsorption may be detected. The results suggested that the presence of intermediates particles (~5,7 nm) and Auδ¯ sites can be necessary to increase the selectivity towards the reduction of the C=O group. This behavior was preferentially seen on the Au/SiO2 catalyst. In the Au/Fe2O3 and Au/TiO2 catalysts, where other metal-support interactions are possible, the selectivity decreased possibly due to the adsorption modes of cinnamaldehyde in planar and vertical atop geometry, which may be explained by the size of the Au° particles: ~9,8 nm and ~4,5 nm, respectively.

https://doi.org/10.18257/raccefyn.852

Keywords

Cinnamyl alcohol; Golden; cinnamaldehyde; Hydrogenation; Catalysts.
PDF (Español (España))
XML (Español (España))

References

Bailie, J.E. & Hutchings, G.J. (2001). Promotion by sulfur of Ag/ZnO catalysts for the hydrogenation of but-2-enal. Catal Commun. 2: 291-294.

Boutonnet, M., Logdberg S., Svensson E.E. (2008). Recent developments in the application of nanoparticles prepared from w/o microemulsions in heterogeneous catalysis. Curr. Opin. Colloid Interface Sci. 13: 270-286.

Breen, J., Burch, R., Gómez-López, J., Griffin, K., Hayes, M. (2004). Steric effects in the selective hydrogenation of cinnamaldehyde to cinnamyl alcohol using an Ir/C catalyst. App Catal A. 268: 267-274.

Brijaldo, M.H., Rojas, H., Martínez, J.J., Passos, F. (2015). Effect of support on acetic acid decomposition over palladium catalysts. J Catal. 331: 63-75.

Bus, E. & Van Bokhoven, J.A. (2007). Hydrogen chemisorption on supported platinum, gold, and platinum–gold-alloy catalysts. Phys Chem Chem Phys. 9: 2894-2902.

Bus, E., Prins, R., Van Bokhoven, J.A. (2007). Origin of the cluster-size effect in the hydrogenation of cinnamaldehyde over supported Au catalysts. Catal Commun. 8: 1397-1402.

Cardenas-Lizana, F., Gomez-Quero, S., Perret, N., Keane, M.A. (2011). Gold catalysis at the gas–solid interface: Role of the support in determining activity and selectivity in the hydrogenation of m-dinitrobenzene. Catal Sci Technol. 1: 652-661.

Chakarova, K., Mihaylov, M.Y., Ivanova, S., Centeno, M.A., Hadjiivanov, K.I. (2011). Well-Defined Negatively Charged Gold Carbonyls on Au/SiO2. J. Phys. Chem. C. 115: 21273-21282.

Delbecq, F. & Sautet, P. (2002). A density functional study of adsorption structures of unsaturated aldehydes on Pt (111): A key factor for hydrogenation selectivity. J. Catal. 211: 398-406.

Durndell, L.J., Parlett, C.M., Hondow, N.S., Isaacs, M.A., Wilson, K., Lee, A.F. (2015). Selectivity control in Ptcatalyzed cinnamaldehyde hydrogenation. Sci Rep. 5: 9425-9434.

Fahlbusch, K.G., Hammerschmidt, F.J., Panten, J., Pickenhagen, W., Schatkowski, D. Flavours and Fragrances: Ullmann’s Encyclopedia of Industrial Chemistry; Wiley: Weinheim, 2008.

Gallezot, P & Richard, D. (1998). Selective Hydrogenation of α,β-Unsaturated Aldehydes. Cat Rev-Sci Eng. 40: 81-126.

Gengatharan M., Rajaram P., Ramaswamy K., Viswanathan B. (2016). Studies on Ni–M (M = Cu, Ag, Au) bimetallic catalysts for selective hydrogenation of cinnamaldehyde. Catal. Today. 263: 105-111.

Iriondo, A., Mendiguren A., Güemez, M.B., Requies, J. Cambra J.F. (2017). 2,5-DMF production through hydrogenation of real and synthetic 5-HMF over transition metal catalysts supported on carriers with different nature. Catal. Today. 279: 286-95.

Ji, X., Niu, X., Li, B., Han, Q., Yuan, F., Zaera, F., Zhu, Y., Fu, H. (2014). Selective hydrogenation of cinnamaldehyde to cinnamal alcohol over platinum/graphene catalysts. Chem Cat Chem. 6: 3246-3253.

Kirichenko, O.A., Kapustin, G.I., Nissenbaum, V.D., Tkachenko, O.P., Poluboyarov, V.A., Tarasov, A.L., Kucherov, A.V., Kustov, L.M. (2010). The novel route of preparation of the supported gold catalysts by deposition-recipitation. Stud Surf Sci Catal. 175: 537-540.

Jiang, H.L. & Xu, Q. J. (2011). Recent progress in synergistic catalysis over heterometallic nanoparticles. Mater. Chem. 21: 13705- 13725.

Lenz, J., Campo, B.C., Álvarez, M., Volpe, M.A. (2009). Liquid phase hydrogenation of alpha,beta-unsaturated aldehydes over gold supported on iron oxides. J Catal. 267: 50-56.

Lin, W., Cheng H., Li, X., Zhang, C., Zhao, F., Arai, M. (2018). Layered double hydroxide‐like Mg3Al1–xFex materials as supports for Ir catalysts: Promotional effects of Fe doping in selective hydrogenation of cinnamaldehyde. Chinese J Catal. 39: 988-996.

Martínez, J.J. (2012). Catalizadores de Au-Ir soportados en óxidos reducibles para hidrogenación de aldehídos α, β-insaturados (Tesis doctoral). Universidad Nacional de Colombia, Bogotá.

Martínez, J.J., Rojas, H., Castañeda, C., Díaz, G., Gómez-Cortés, A., Arenas-Alatorre, J. (2012). Cinnamaldehydehydrogenation over Ir/SiO2 and Ir/FeOx/SiO2 catalysts effect of FeOx on the activity and selectivity. Curr Org Chem. 16: 2791-2796.

Milone, C., Crisafulli, C., Ingoglia, R., Schipilliti, L., Galvagno, S. (2007). A comparative study on the selective hydrogenation of α,β unsaturated aldehyde and ketone to unsaturated alcohols on Au supported catalysts. Catal Today. 122:341-351.

Milone, C., Ingoglia, R., Pistone, A., Neri, G., Frusteri, F., Galvagno, S. (2004). Selective hydrogenation of α,β-unsaturated ketones to α,β-unsaturated alcohols on goldsupported catalysts. J Catal. 222: 348-356.

Milone, C., Trapani, M. C., Galvagno, S. (2008). Synthesis of cinnamyl ethyl ether in the hydrogenation of cinnamaldehyde on Au/TiO2 catalysts. Appl Catal A. 337: 163-167.

Mohr, C., Hofmeister, H., Radnik, J., Claus, P. (2003) Identification of Active Sites in Gold-Catalyzed Hydrogenation of Acrolein. J. Am. Chem. Soc. 125: 1905-1911.

Pan, H., Li, J., Lu, J., Wang, G., Xie, W., Wua, P., Li, X. (2017). Selective hydrogenation of cinnamaldehyde with PtFex/Al2O3@SBA-15 catalyst: Enhancement in activity and selectivity to unsaturated alcohol by Pt-FeOx and Pt-Al2O3@SBA-15 interaction. J. Catal. 354: 24-36.

Radnik, J., Mohr, C., Claus, P. (2003). On the origin of binding energy shifts of core levels of supported gold nanoparticles and dependence of pretreatment and material synthesis. Phys Chem Chem Phys. 5: 172-177.

Reyes, P., Rojas, H., Fierro, J.L.G. (2003). Effect of Fe/Ir ratio on the surface and catalytic properties in citral hydrogenation on Fe-Ir/TiO2 catalysts. J Mol Cat A: Chemical. 203:203-211.

Rojas, H., Díaz, G., Martínez, J.J., Castañeda, C., Gómez-Cortés, A., Arenas-Alatorre, J. (2012). Hydrogenation of α, β-unsaturated carbonyl compounds over Au and Ir supported on SiO2. J Mol Cat A. 363-364: 122-128.

Rojas, H., Martínez, J., Mancípe, S., Borda, G., Reyes, P. (2012). Citral hydrogenation over novel niobia and titania supported Au, Ir–Au and Ir catalysts. React Kinet Mech Cat. 106: 445-455.

Somodi, F., Borbáth, I., Hegedűs, M., Tompos, A., Sajó, I.E., Szegedi, Á., Rojas, S., Fierro, J.L.G., Margitfalvi, J.L. (2008). Modified preparation method for highly active Au/SiO2 catalysts used in CO oxidation. App Cata A. 347:216-222.

Sun, K.Q., Hong, Y.C., Zhang, G.R., Xu, B.Q. (2011). Synergy between Pt and Au in Pt-on-Au Nanostructures for Chemoselective Hydrogenation Catalysis. ACS Catal. 1:1336-1346.

Venugopal, A. & Scurrell, M.S. (2004). Low temperature reductive pretreatment of Au/Fe2O3 catalysts, TPR/TPO studies and behaviour in the water-gas shift reaction. App Catal A. 258: 241-249.

Visco, A.M, Neri, F., Donato, A., Milone, C., Galvagno, S. (1999). X-ray photoelectron spectroscopy of Au/Fe2O3 catalysts. Phys Chem Chem Phys. 1: 2869-2873.

Wang, X. & Andrews, L. (2003). Gold is noble but gold hydride anions are stable. Angew Chem Int Ed. 115: 5359-5364.

Wang, W., Xie, Y., Zhang, S., Liu, X., Haruta, M., Huang, J. (2018). Selective Hydrogenation of Cinnamaldehyde Catalyzed by ZnO-Fe2O3 Mixed Oxide Supported Gold Nanocatalysts. Catalysts. 8: 60-73.

Wu, Q., Zhang C., Zhang, B., Li, X., Ying, Z., Liu, T., Lin, W., Yu, Y., Cheng, H., Zhao., F. (2016). Highly selective Pt/ ordered mesoporous TiO2–SiO2 catalysts for hydrogenation of cinnamaldehyde: The promoting role of Ti2+. J Colloid Interface Sci. 463: 75-82.

Zanella, R., Louis, C., Giorgio, S., Touroude, R. (2004). Crotonaldehyde hydrogenation by gold supported on TiO2: Structure sensitivity and mechanism. J Catal. 223: 328-339.

Zaki, M. I., Mekhemer, G. A. H., Fouad, N. E., Rabee, A. I. M. (2014). Structure–acidity correlation of supported tungsten (VI)-oxo-species: FT-IR and TPD studies of adsorbed pyridine and catalytic decomposition of 2-propanol. Appl. Surf. Sci. 308: 380-387.

Zhao, J., Jun, N., Xu, J.H., Xu, J.T., Cen, J., Li, X.N. (2014). Ir Promotion of TiO2-supported Au catalysts for selective hydrogenation of cinnamaldehyde. Catal. Commun. 54: 72-76.

Zhu, Y., Qian, H.F., Drake, B.A., Jin, R.C. (2010). Atomically precise Au25( SR)18 nanoparticles as catalysts for the selective hydrogenation of αβ-Unsaturated ketones and aldehydes. Angew. Chem. Int. Ed. 122: 1317-1320.

Zhou, X., Su, T., Jiang, Y., Qin, Z., Ji, H., Guo, Z. (2016). CuO–Fe2O3–CeO2/HZSM-5 bifunctional catalyst hydrogenated CO2 for enhanced dimethyl ether synthesis. Chem. Eng. Sci. 153: 10-20.

Declaration of originality and transfer author's rights

The authors declare:

  1. The published data and reference materials have been duly identified with their respective credits and have been included in the bibliographic notes and citations that have been so identified and that should it be required, I have all releases and permissions from any copyrighted material. 
  2. All material presented is free from any copyright and that I accept full legal responsibility for any legal claims relating to copyrighted intellectual property, fully exonerating from responsibility the Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales.
  3. This work is unpublished and will not be sent to any other journal while waiting for the editorial decision of this journal. I declare that there is no conflict of interest in this manuscript.
  4. In case of publication of this article, all author´s rights are transferred to the Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, and so cannot be reproduced in any form without the express permission of it.
  5. By means of this document, if the article is accepted for publication by the Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, the Revista assumes the right to edit and publish the articles in national and international indices or data bases for academic and scientific use in paper, electronic, CD-ROM, internet form either of the complete text or any other known form known or to be known and non-commercial, respecting the rights of the authors.

Transfer of author rights

In case the article is approved for publication, the main author in representation of himself and his co-authors or the main author and his co-authors must cede the author rights of the corresponding article to the Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, except in the following cases:

The authors and co-authors will retain the right to revise, adapt, prepare derived works, oral presentations, and distribution to some colleagues of reprints of their own published work, if the corresponding credit is given to the Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales. It is also permissible to publish the title of the work, summary, tables, and figures of the work in the corresponding web sites of the authors or their employers, also giving credit to the Revista.

If the work has been realized under contract, the author’s employer has the right to revise, adapt, prepare derivative works, reproduce, or distribute in hard copy the published work, in a secure manner and for the exclusive use of his employees.

If the Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales were approached for permission by a third party for using, printing, or publishing specifically articles already published, the Revista must obtain the express permission of the author and co-authors of the work or of the employer except for use in classrooms, libraries, or reprinted in a collective work. The Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales reserves the possible use in its front cover of figures submitted with the manuscripts.

No other right, other than the author’s right, can be claimed by the Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales.