Abstract
Solar cells with Mo/CZTS/ZnS/ZnO structure were fabricated using Cu2ZnSnS4 (CZTS) films as the absorber layer. These films were grown by simultaneous evaporation of its precursors with a coaxial evaporation source whose advanced design allowed to improve significantly the homogeneity of the chemical composition in the entire volume. Through X-ray diffraction (XRD) measurements we were able to verify that under optimized growing conditions, it is possible to get single phase Cu2ZnSnS4 films; through X-ray photoelectron spectroscopy (XPS) depth profile analysis we confirmed that the chemical composition of the samples prepared from a coaxial source had a better homogeneity throughout the volume than the samples deposited from three separated evaporation sources. We also found that the conversion efficiencies of solar cells fabricated using a CZTS absorber layer grown from a coaxial evaporation source was significantly greater than that of cells fabricated using CZTS layers prepared from separate evaporation sources. We obtained conversion efficiencies of 5.6%, short circuit current of 18.3 mA/cm2 and open-circuit voltage of 0.52 V. © 2019. Acad. Colomb. Cienc. Ex. Fis. Nat.
References
Ennaoui, A., Lux-Steiner, M., Weber, A. Abou-Ras, D., Kötschau I., Schock, H.W., Schurr, R., Hölzing A., Jost, S., Hock, R. (2009). Cu2ZnSnS4 thin film solar cells from electroplated precursors: Novel low-cost perspective. Thin Solid Films. 517: 2511-2514.
Feltrin, A., Freundlich, A. (2008). Material considerations for terawatt level deployment of photovoltaics. Renew Energy. 33: 180-185.
Gordillo, G., Ramírez, A. A., Ramírez, E. A. (2016). Development of novel control system to grow ZnO thin films by reactive evaporation. J. Mater. Res. Technol. 5 (3): 219-225.
Katagiri, H., Jimbo, K., Yamada, S., Kamimura, T., Shwe, M. W., Fukano, T., Ito, T., Motohiro, T. (2008). Enhanced conversion efficiencies of Cu2ZnSnS4-based thin film solar cells by using preferential etching technique. Appl. Phys. Express. 1: 041201-041202.
Katagiri, H., Sasaguchi, N., Hando, S., Hosino, S., Ohashi, J., Yokota, T. (1997). Preparation and evaluation of Cu2ZnSnS4 thin films by sulfurization of E-B evaporated precursors. Sol. Energy Mater. & Sol. Cells. 49: 407-414.
Khalate, S. A., Kate, R. S., Deokate, R. J. (2018). A review on energy economics and the recent research and development in energy and the Cu2ZnSnS4 (CZTS) solar cells: A focus towards efficiency. Solar Energy. 169: 616-633.
Lin, X. Z., Kavalakkatt, J., Lux-Steiner, M., Ennaoui, A. (2011). Thin Film Solar Cells Absorber Cu2ZnSnS4 (CZTS) by annealing of Monodisperse Kesterite Nanoparticle precursors, Hamburg, Proc. 26th Europ. Photovolt. Solar Energy Conf. p. 2896.
Mialhe, P., Charles, J. P., Khoury, A., Bordure, G. (1986). The diode quality factor of solar cells under illumination. J. Phys. D. 19: 483-492.
Pankove, J. I. (1971). Optical processes in semiconductors. New York, USA: Dover Publications, Inc. p. 57.
Repins, I., Beall, C., Vora, N., DeHart, C., Kuciauskas, D., Dippo, P., To, B., Mann, J., Hsu, W. C., Goodrich, A., Noufi, R. (2012). Co-evaporated Cu2ZnSnSe4 films and devices. Sol. Energy Mater. & Sol. Cells. 101: 154-159.
Riha, S.C., Parkinson, B.A., Prieto, A.L. (2009). Solution based synthesis and characterization of Cu2ZnSnS4 nanocrystals, J. Am. Chem. Soc. 131 (34): 12054-12055.
Srinivasan, R., Yogamalar, R., Josephus, R. J., Bose, A.C. (2009). Estimation of lattice strain, stress, energy density and crystallite size of the spherical yttrium oxide nanoparticles. Funct. Mater. Lett. 2: 1.
Swanepoel, R. (1983) Determination of the thickness and optical constants of amorphous silicon. Journal of Physics E. 12: 1214-222.
Tanaka, K., Fukui, Y., Moritake, N., Uchiki, H. (2011). Chemical composition dependence of morphological and optical properties of Cu2ZnSnS4 thin films deposited by sol–gel sulfurization and Cu2ZnSnS4 thin film solar cell efficiency. Sol. Energy Mater. & Sol. Cells. 95: 838-842.
Todorov, T. K., Tang, J., Bag, S., Gunawan, O., Gokmen, T., Zhu, Y., Mitzi, D. B. (2013). Beyond 11% Efficiency: Characteristics of State‐of‐the‐Art Cu2ZnSn(S,Se)4 Solar Cells. Adv. Energy Mater. 3: 34-38.
Wang, W., Winkler, M. T., Gunawan, O., Gokmen, T., Todorov, T. K., Zhu, Y., Mitzi, D. B. (2013). Device Characteristics of CZTSSe Thin-Film Solar Cells with 12.6% Efficiency. Advanced Energy Materials. 4 (7): 1301465-1301465.
Williamson, G. K., Hall, W. H. (1953) X-ray line broadening from filed Aluminium and Wolframium. Acta Metall. 1:22-31.
Winkler, M. T., Wang, W., Hovel, H. J., Gunawan, O., Todorov, T. K., Mitzi, D. B. (2014). Optical designs that improve the efficiency of Cu2ZnSn(S,Se)4 solar cells. Energy Environ Sci. 7: 1029-1036.
Xu, J., Yang, X., Yang, Q. D., Wong, T. L., Lee, C.S. (2012). Cu2ZnSnS4 hierarchical microspheres as an effective counter electrode material for quantum dot sensitized solar cells. J. Phys. Chem. C. 116 (37): 19718-19723.
Yan, C., Sun, K., Liu, F., Huang, J., Zhou, F., Hao, X. (2017) Boost Voc of pure sulfide kesterite solar cell via a double CZTS layer stacks. Sol. Energy Mater. & Sol. Cells. 160: 7-11.
Yang, W., Duan, H. S., Bob, B., Zhou, H., Lei, B., Chung, C. H., Li, S. H., Hou, W. W., Yang, Y. (2012). Novel solution processing of high-efficiency Earth-abundant Cu2ZnSn(S,Se)4 solar cells. Adv. Mater. 24 (47): 6323-6329.
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright (c) 2019 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales