Characterization of the atmospheric turbulence in a tropical Andes megacity large urban park
Portada 43 (166) 2019
PDF (Español (España))
HTML (Español (España))

How to Cite

Ortiz, E. Y., Jimenez, R., Fochesatto, G. J., & Morales-Rincon, L. A. (2019). Characterization of the atmospheric turbulence in a tropical Andes megacity large urban park. Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 43(166), 133–145. https://doi.org/10.18257/raccefyn.697

Downloads

Download data is not yet available.

Métricas Alternativas


Dimensions

Abstract

The turbulence produced by surface-atmosphere interactions and its dissipation largely determine the dispersion of pollutants and, therefore, their public health impact. Turbulence parameterizations in pollutant transport and dispersion models have been observationally obtained and validated mainly for mid-latitudes, but very little for the tropics. In this article, we report the statistical characterization of the atmospheric turbulence at a representative site of the Metropolitan Area of Bogota – Colombia (4°39’30.48”N, 74°5’2.38”W, 2577 m ASL), a tropical Andean megacity, using high frequency measurements obtained with a 3-axis ultrasonic anemometer validated for exposure and operated at 10 Hz, at 7.8 m height between August and November 2014. Our analysis reveals that during the measurement period the lateral turbulence in Bogota, expressed as standard deviation, was high and comparable to the longitudinal turbulence (σv ≅ σu ≈ 0.2-1.3 m s-1), which characterizes its atmosphere as horizontally isotropic. The turbulent intensities observed (Iu ≈ Iv ≈ 0.6, Iw ≈ 0.3) were ~2 to ~3 times higher than those reported for mid-latitudes at the low wind speeds at Bogota. The spectral analysis was consistent with the statistical one, with longitudinal and vertical spectra comparable to those reported for neutral to slightly unstable conditions, and lateral spectra with peak frequencies an order of magnitude lower than the reported in the literature, which indicates high production of lateral turbulence. We estimate that the eddies at the beginning of the energy cascade had characteristic lengths of ~120 m and ~10 m in the horizontal and vertical, respectively. © 2019. Acad. Colomb. Cienc. Ex. Fis. Nat.

https://doi.org/10.18257/raccefyn.697
PDF (Español (España))
HTML (Español (España))

References

Andreas, E.L., Geiger, C.A., Treviño, G., Claffey, K.J. (2008). Identifying nonstationarity in turbulence series. BoundaryLayer Meteorol. 127: 37-56.

Arango, C.D. (2018). Comunicación personal.

Arya, S.P. (1999). Air pollution meteorology and dispersion, New York, USA: Oxford University Press, pp. 85-96, 108-110, 112-113, 123-124, 183-187, 260-261.

Barlas, E., Wu, K.L., Zhu, W.J., Porté-Agel, F., Shen, W.Z. (2018). Variability of wind turbine noise over a diurnal cycle. Renew. Energ. 126: 791-800.

Christen, A., van Gorsel, E., Vogt, R. (2007). Coherent structures in urban roughness sublayer turbulence. Int. J. Climatol. 27: 1955-1968.

Departamento Administrativo Nacional de Estadística – Colombia (DANE) (2015). Demografía y población – proyecciones de población – Colombia. “Proyecciones de población municipales por área 2005-2020”, Bogotá. Fecha de consulta: 01/07/2018. Disponible en: https://www.dane. gov.co/index.php/estadisticas-por-tema/demografia-ypoblacion/proyecciones-de-poblacion)

Foken, T. (2008). Micrometeorology. Heidelberg, Germany: Springer, pp. 52-60, 109-111.

Guerrero, O.J., Jimenez, R. (2012). Mutual information in the air quality monitoring network of Bogota – Colombia, American Geophysical Union (AGU) Fall Meeting 2012, Abstract IN23B-1505, San Francisco (CA), USA. Fecha de consulta: 01/07/2018. Disponible en: http://fallmeeting.agu.org/2012/files/2012/12/agu_fm_2012_poster_ojg_rjp.pdf

Guerrero, O.J. (2013). Desarrollo de una metodología para evaluar la cobertura espacial de la Red de Monitoreo de la Calidad del Aire de Bogotá. Tesis de Maestría en Ingeniería Ambiental, Universidad Nacional de Colombia, Bogotá. Fecha de consulta: 01/07/2018. Disponible en: http://www. bdigital.unal.edu.co/10269/

Guerrero, O.J., Jiménez, R. (2014). Spatial representativeness of the Bogota air quality monitoring network. A&WMA’s 107a Annual Conference & Exhibition, Paper 33622, Long Beach (CA), USA. Fecha de consulta: 1 de julio de 2018. Disponible en: https://www.researchgate.net/profile/Rodrigo_Jimenez2/publications

Hanna, S.R. (1979). Some statistics of Lagrangian and Eulerian wind fluctuations. J. Appl. Meteor. 18 (4): 518-525.

Hanna, S.R. (1983). Lateral turbulence intensity and plume meandering during stable conditions. J. Climate Appl. Meteor. 22: 1424-1430.

Hansen, K.S., Barthelmie, R.J., Jensen, L.E., Sommer, A. (2012). The impact of turbulence intensity and atmospheric stability on power deficits due to wind turbine wakes at Horns Rev wind farm. Wind Energ. 15 (1): 183-196.

Jaramillo-Robledo, A. & Cháves-Córdoba, B. (2000). Distribución de la precipitación en Colombia analizada mediante conglomeración estadística. Cenicafé. 51 (2): 102-113 Fecha de consulta: 9 de noviembre de 2018. Disponible en: https:// www.cenicafe.org/es/publications/arc051%2802%29102113.pdf

Kaimal, J.C., Wyngaard, J.C., Izumi, Y., Coté, O.R. (1972). Spectral characteristics of surface‐layer turbulence, Q.J.R. Meteorol. Soc. 98: 563-589.

Kaimal, J.C. (1973). Turbulence spectra, length scales and structure parameters in the stable surface layer. Boundary-Layer Meteorol. 4: 289-309.

Kaimal, J.C., Wyngaard, J.C., Izumi, Y., Coté, O.R., Haugen, O.R., Caughey, S.J., Readings, C.J. (1976). Turbulence structure in the convective boundary layer. J. Atmos. Sci. 33: 2152-2169.

Katul, G. & Chu, C.-R. A. (1998). A theoretical and experimental investigation of energy-containing scales in the dynamic sublayer of boundary-layer flows. Boundary-Layer Meteorol. 86 (2): 279-312.

Kljun, N., Calanca, P., Rotach, M.W., Schmid, H.P. (2004). A simple parameterisation for flux footprint predictions. Boundary-Layer Meteorol. 112: 503-523.

Lin, J.C., Gerbig, C., Wofsy, S.C., Andrews, A.E., Daube, B.C., Davis, K.J., Grainger, C.A. (2003). A near-field tool for simulating the upstream influence of atmospheric observations: The Stochastic Time-Inverted Lagrangian Transport (STILT) model. J. Geophys. Res. 108 (D16): 4493-4511.

Magnago, R., Fisch, G., Moraes, O. (2010). Análise espectral do vento no Centro de Lançamento de Alcântara (CLA). Rev. Bras. Meteorol. 25 (2): 260-269.

Montoya, G.J., Cepeda, W., Eslava, J.A. (2004). Características de la turbulencia y de la estabilidad atmosférica en Bogotá. Rev. Acad. Colomb. Cienc. 28 (108): 327-335.

Morales-R, L.A., Cañas Soler F., Hernandez, A.J., Jimenez, R. (2015a). Captura y emisión de bióxido de carbono en una gran zona verde de Bogotá medidos mediante covarianza de remolinos. V Congreso Colombiano y Conferencia Inter-nacional de Calidad del Aire y Salud Pública (CASAP), Bucaramanga, Colombia. Fecha de consulta: 1 de julio de 2018. Disponible en: http://casap.com.co/2015/ es/memorias/libro_memorias.pdf?v=2

Morales-R, L.A., Hernández, A.J., Cañas-Soler, F, Jiménez, R. (2015b). Flujos de CO2 durante un periodo de descanso de cultivos transitorios mecanizados en una unidad agroindustrial en la altillanura colombiana. V CASAP, Bucaramanga, Colombia. Fecha de consulta: 1 de julio de 2018. Disponible en: http://casap.com.co/2015/es/ memorias/libro_memorias.pdf?v=2

Mouri, H., Hori, A., Kawashima, Y., Hashimoto, K. (2012). Large-scale length that determines the mean rate of energy dissipation in turbulence. Phys. Rev. E 86: 026309-1 – 026309-7.

Ortiz, E.Y., Galvis, B.R., Pachón, J.E., Cuadros, N. (2015). Analysis of 2002-2013 ambient air quality trends in Bogotá. V CASAP, Bucaramanga, Colombia. Fecha de consulta: 1 de julio de 2018. Disponible en: http://casap.com.co/2015/es/memorias/libro_memorias.pdf?v=2

Ortiz, E.Y. (2016). Medición y caracterización de la turbulencia atmosférica en Bogotá y su influencia en la dispersión de contaminantes. Tesis de Maestría en Ingeniería Ambiental, Universidad Nacional de Colombia, Bogotá, pp. 84-88. Fecha de consulta: 9 de noviembre de 2018. Disponible en: http://bdigital.unal.edu.co/55987/

Pinzón, G., González, D., Ramírez, A. (2016). Análisis comparativo de seis lugares de interés para la ubicación de instrumentación astronómica en Colombia. Rev. Acad. Colomb. Cienc. Exact. Fis. Nat. 40 (154): 53-68.

Ren, Y., Zhang, H., Wei, W., Wu, B., Cai, X., Song, Y. (2019). Effects of turbulence structure and urbanization on the heavy haze pollution process. Atmos. Chem. Phys. 19: 1041-1057. https://doi.org/10.5194/acp-19-1041-2019

Richardson, J.R., Kabamba, P.T., Atkins, E.M., Girard, A.R. (2014). Safety margins for flight through stochastic gusts. J. Guid. Control Dyn. 37 (6): 2026-2030.

Roth, M., Jansson, C., Velasco, E. (2017). Multi‐year energy balance and carbon dioxide fluxes over a residential neighbourhood in a tropical city. Int. J. Climatol. 37: 2679-2698.

Saylor, J.E., Mora, A., Horton, B.K., Nie, J. (2009). Controls on the isotopic composition of surface water and precipitation in the Northern Andes, Colombian Eastern Cordillera, Geochimica et Cosmochimica Acta. 73: 6999-7018.

Shao, Y. (1992). Turbulent dispersion in coastal atmospheric boundary layers: An application of a Lagrangian model. Boundary-Layer Meteorol. 59 (4): 363-385.

She, Z.-S. (1991). Intermittency and non-gaussian statistics in turbulence. Fluid Dyn. Res. 8 (1-4): 143-158.

Silva Da Santana, R.A., Tota, J., Nascimiento Dos Santos, R.M., Souza Do Vale, R. (2015). Estabilidade e estrutura da turbulência sob a influência de jatos de baixos níveis noturnos no sudoeste da Amazônia. Rev. Bras. Meteorol. 30 (4): 405-414.

Starkenburg, D., Metzger, S., Fochesatto, G.J., Alfieri, J.G., Gens, R., Prakash, A., Cristóbal, J. (2016). Assessment of despiking methods for turbulence data in micrometeorology. J. Atmospheric Ocean. Technol. 33 (9): 2001-2013.

Starkenburg, D., Fochesatto, G.J., Prakash, A., Cristóbal, J., Gens, R., Kane D.L. (2013). The role of coherent flow structures in the sensible heat fluxes of an Alaskan boreal forest, J. Geophys. Res. Atmospheres. 118 (15): 8140-8155.

Swamy, N.V.C., Gowda, B.H.L., Lakshminath, V.R. (1979). Auto-correlation measurements and integral time scales in three-dimensional turbulent boundary layers. Appl. Sci. Res. 35 (4): 237-249.

Therry, G. & Lacarrère, P. (1983). Improving the eddy kinetic energy model for planetary boundary layer description. Bound.-Layer Meteorol. 25: 63-88.

Weber, S. & Kordowski, K. (2010). Comparison of atmospheric turbulence characteristics and turbulent fluxes from two urban sites in Essen, Germany, Theor. Appl. Climatol. 102: 61-74.

Yadav, A.K, S. Raman, M. Sharan. (1996). Surface layer turbulence spectra and dissipation rates during low winds in tropics. Boundary-Layer Meteorol. 79 (3): 205-

Declaration of originality and transfer author's rights

The authors declare:

  1. The published data and reference materials have been duly identified with their respective credits and have been included in the bibliographic notes and citations that have been so identified and that should it be required, I have all releases and permissions from any copyrighted material. 
  2. All material presented is free from any copyright and that I accept full legal responsibility for any legal claims relating to copyrighted intellectual property, fully exonerating from responsibility the Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales.
  3. This work is unpublished and will not be sent to any other journal while waiting for the editorial decision of this journal. I declare that there is no conflict of interest in this manuscript.
  4. In case of publication of this article, all author´s rights are transferred to the Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, and so cannot be reproduced in any form without the express permission of it.
  5. By means of this document, if the article is accepted for publication by the Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, the Revista assumes the right to edit and publish the articles in national and international indices or data bases for academic and scientific use in paper, electronic, CD-ROM, internet form either of the complete text or any other known form known or to be known and non-commercial, respecting the rights of the authors.

Transfer of author rights

In case the article is approved for publication, the main author in representation of himself and his co-authors or the main author and his co-authors must cede the author rights of the corresponding article to the Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, except in the following cases:

The authors and co-authors will retain the right to revise, adapt, prepare derived works, oral presentations, and distribution to some colleagues of reprints of their own published work, if the corresponding credit is given to the Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales. It is also permissible to publish the title of the work, summary, tables, and figures of the work in the corresponding web sites of the authors or their employers, also giving credit to the Revista.

If the work has been realized under contract, the author’s employer has the right to revise, adapt, prepare derivative works, reproduce, or distribute in hard copy the published work, in a secure manner and for the exclusive use of his employees.

If the Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales were approached for permission by a third party for using, printing, or publishing specifically articles already published, the Revista must obtain the express permission of the author and co-authors of the work or of the employer except for use in classrooms, libraries, or reprinted in a collective work. The Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales reserves the possible use in its front cover of figures submitted with the manuscripts.

No other right, other than the author’s right, can be claimed by the Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales.