Abstract
In this work we developed an algorithm to estimate global solar radiation for a cloudless atmosphere, by using the shortwave radiative transfer equations (0.3 µm - 2.8 µm). Spectral transmittances of direct solar radiation due to Rayleigh and Mie scattering were determined. In order to estimate the Ångström turbidity coefficient, the Aerosol Optical Depth (AOD) was calculated for four different types of atmospheres, using the software Optical Properties of Aerosols and Clouds (OPAC). Likewise, spectral transmittances due to absorption of direct solar radiation were calculated, including aerosols, water vapor, carbon dioxide and dry air (mixed gases). The ozone content was obtained from daily data of NASA’s database. For the diffuse component of solar radiation, a new equation was developed for the calculation of the spectral forward scattering fraction. The statistical comparison between the results obtained with the model developed here, the measured global solar radiation data at Potsdam radiation station in Germany and the results of other three radiative models, between 2012 and 2014, shows that the new model allows to calculate the hourly global solar radiation with sufficient precision. © 2018. Acad. Colomb. Cienc. Ex. Fis. Nat.References
Alemania guía de vivienda. (2016). Disponible en https://www.justlanded.com/espanol/Alemania/Guia-Alemania/Alojamiento/Vivienda, accedida en marzo de 2016. Modelamiento físico de la radiación global 113 doi: http://dx.doi.org/10.18257 raccefyn.610
Rev. Acad. Colomb. Cienc. Ex. Fis. Nat. 42(162):104-113, enero-marzo de 2018
Ångström, A. (1924). Solar and terrestrial radiation. Quarterly Journal of the Royal Meteorological Society. 50: 121-126.
Ångström, A. (1961). Techniques of determining the turbidity of the atmosphere. Tellus, 13: 214-223.
Bird, R., Riordan, C. (1986). Simple solar spectral model for direct and diffuse irradiance on horizontal and tilted planes at the Earth´s surface for cloudless atmospheres. J. Climate Appl. Meteor. 25: 87-97.
Brine, D., Iqbal, M. (1983). Diffuse and global solar spectral irradiance under cloudless skies. Solar Energy, 30: 447-453.
Dai, Q., Fang, X. (2014). A simple model to predict solar radiation under clear sky conditions. Advances in Space Research. 53:1239-1245.
Fröhlich, C., London, J. (1986). Revised instruction manual on radiation instruments and measurements. Ginebra, Suiza: WCRP Publications.
Gónima, L. (1993). Simple algorithm for the atmospheric correction of reflectance images. International Journal of Remote Sensing. 14: 1179, 1187.
Goody, R. M., Yung, Y. L. (1989). Atmospheric Radiation: theoretical basis. New York, USA: Oxford University Press.
Hess, M., Koepke, P. Schult, I. (1998). Optical properties of aerosols and clouds: the software package OPAC. American Meteorological Society. 79: 831-844.
Iqbal, M. (1983). An introduction to solar radiation. Toronto, Canada: Academic Press.
Irvine, W. (1963). The asymmetry of the scattering diagram of a spherical particle. Astronomical Institutes of The Netherland. 17: 176-184.
Janjai, S., Nunez, M., Prathumsit, L., Wattam, R., Sabooding, R. (2013). A semi-empirical approach for the estimation of global, direct and diffuse illuminance under clear sky condition in the tropics. Energy and Buildings. 66: 177-182.
Justus, C., Paris, M. (1985). A model for solar spectral irradiance and radiance at the bottom and top of a cloudless atmosphere. Journal of Climate and Applied Meteorology. 24: 193-205.
Kasten, F. (1965). A new table and approximation formula for the relative optical air mass. Theoretical and Applied Climatology. 14: 206-223.
Leckner, B. (1978). The spectral distribution of solar radiation at the Earth´s surface elements of a model. Solar Energy. 20: 143-150.
Lopez, G., Batlles, F., Tovar, J. (2007). A new simple parameterization of daily clear-sky global solar radiation including horizon effects. Energy Conversion and Management. 48: 226-233.
National Aeoronautics and Space Administration (NASA). (2015). Ozone & Air Quality. Disponible en: ftp://toms. gsfc.nasa.gov/pub/omi/data/ozone/ accedida en noviembre de 2015.
Optical Properties of Aerosols and Clouds (OPAC). 2016. Fecha de consulta: Entre junio y diciembre de 2016. Disponible en: http://andromeda.caf.dlr.de/data-products/spectroscopydata optical-properties-aerosols-and-clouds-opac.
Pacheco, A., Carlvalho, A., Aki, A., Morgan, E., Terra, F., Evaldo, A., Almeida, A. (2017). Global radiation by simplified models for the state of Mato Grosso, Brazil. Pesquisa Agropecuaria Brasileira. 52: 215-227.
Pelkowski, J. (2009). A physical rationale for generalized Ångström–Prescott regression. Solar Energy. 83: 955-963.
Prescott, J. (1940). Evaporation from water surface in relation to solar radiation. Transactions of the Royal Society of South Australia. 64: 114-118.
Russell, P., Bergstrom, R., Shinozuka, Y. Clarke, A., Decarlo, P., Jimenez, J., Livingston, J., Redemann, J., Dubovik, O., Strawa, A. (2010). Absorption Ångström Exponent in AERONET and related data as an indicator of aerosol composition. Atmospheric Chemistry and Physics. 10: 1155-1169.
Servicio Meteorológico Alemán. (2016). Disponible en ftp://ftpcdc.dwd.de/pub/CDC/, accedida entre enero de y junio de 2016.
Tang, W., Yang, K. He, J. Qin, J. (2010). Quality control and estimation of global solar radiation in China. Solar Energy. 84: 466-475.
Yang, K., Huang, G., Tamai, N. (2001). A hybrid model for estimating global solar radiation. Solar Energy. 70: 13-22.
Yang. K., Koike, T., Ye, B. (2006). Improving estimation of hourly, daily, and monthly solar radiation by importing global data sets. Agricultural and Forest Meteorology. 137: 43-55.
World Climate Programe (WCP). (1986). A preliminary cloudless standard atmosphere. WCP-No. 112.
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright (c) 2018 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales