Abstract
The polycrystalline ceramic of Sr2SbMnO6 was synthesized by the conventional solid state reaction. The used synthesis route differed from others reported in the literature, as we used SrO instead of SrCO3 as the Sr precursor. Studies of the X-ray diffraction (XRD) pattern obtained by means of the Rietveld refinement using the code of the Generalized Structure Analysis System (GSAS) software were performed. The analyses revealed that the crystal structure was tetragonal in space group P4/mnc at temperatures from 100 to 600º C, and changed to a cubic structure with space group Fm-3m at temperatures between 800 and 1,000º C. The temperature dependence of the lattice parameter was also discussed. The study of this material is important given its multiferroic properties. © 2018. Acad.Colomb. Cienc. Ex. Fis. Nat.
References
Baral, A. & Varma, K. B. R. (2009). Low temperature molten-salt synthesis of nanocrystalline cubic Sr2SbMnO6. Journal of Solid State Chemistry. 182 (12): 3282-3288.
Cheah, M., Saines, P. J., Kennedy, B. J. (2006). The Jahn–Teller distortion and cation ordering in the perovskite Sr2MnSbO6. Journal of Solid State Chemistry. 179 (6): 1775-1781.
Baral, A., Preethi, K.R.S. & Varma, M.B.R. (2011). Dielectric relaxation behaviour of Sr2SbMnO6 ceramics fabricated from nanocrystalline powders prepared by molten salt synthesis. Bulletin of Materials Science. 34 (1): 53-60.
Foster, M. C., Nielson, R. M., Abrahams, S. C. (1997). Sr2SbMnO6: A new semiconductor ferroelectric. Journal of Applied Physics. 82 (6): 3076-3080.
Ivanov, S. A., Nordblad, P., Tellgren, R., Hewat, A. (2009). Temperature evolution of structure and magnetic properties in the perovskite Sr2MnSbO6. Materials Research Bulletin. 44 (4): 822-830.
Mahato, D. K., Dutta, A., & Sinha, T. P. (2010). Impedance spectroscopy analysis of double perovskite Ho2NiTiO6. Journal of Materials Science. 45 (24): 6757-6762.
Majhi, K., Prakash, B. S., Varma, K. B. R. (2007). Extreme values of relative permittivity and dielectric relaxation in Sr2SbMnO6 ceramics. Journal of Physics D: Applied Physics. 40 (22): 7128.
Ortiz-Díaz, O., Rodríguez, M. J. A., Fajardo, F., Téllez, D. L., Roa-Rojas, J. (2007). Electronic and structural properties of Sr2YSbO6. Physica B: Condensed Matter. 398 (2): 248-251.
Politova, E. D., Kaleva, G. M., Danilenko, I. N., Chuprakov, V. F., Ivanov, S. A., Venevtsev, Y. N. (1990). Phase transformations in PbTiO3-Sr(Sb1/2Mn1/2)O3 system. Izvestiya Akademii Nauk SSSR, Neorganicheskie Materialy. 26 (11): 2352-2356.
Preethi-Meher, K. R. S., Janolin, P. E., Guiblin, N., Paramesh, G., Varma, K. B. R. (2012). High temperature phase transition studies and dielectric properties of Sr2SbMnO6. AIP Conference Proceedings. 1447 (1): 137-138.
Yamagata, M., Endo, T., Inoue, Y., Koyama, Y. (2017). Features of highly correlated electronic states in the simple perovskite manganite Sr1− xSmxMnO3 with 0.15≤ x≤ 0.50. Journal of the Physical Society of Japan. 86 (5): 054705.
Yamagata, M., Inoue, Y., Koyama, Y. (2017). Crystallographic features of electronic states in the highly-correlated electronic system Sr1-xSmxMnO3 around x= 0.50. Materials Science Forum. 879: 2158-2163). Trans Tech Publications.
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright (c) 2018 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales