El papel de la membrana mitocondrial externa en el control del metabolismo energético celular
Portada 42 (162) 2018
PDF

Cómo citar

Lemeshko, V. V. (2018). El papel de la membrana mitocondrial externa en el control del metabolismo energético celular. Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 42(162), 6–21. https://doi.org/10.18257/raccefyn.549

Descargas

Los datos de descargas todavía no están disponibles.

Métricas Alternativas


Dimensions

Resumen

Hasta 95 % de la energía en las células eucariotas se produce en las mitocondrias, las cuales se componen de dos membranas, la interna y la externa. La principal función de la membrana interna es la fosforilación oxidativa. El trifosfato de adenosina (adenosine triphosphate, ATP) y el fosfato de creatina, producidos en las mitocondrias, se transfieren al citosol atravesando la membrana mitocondrial externa, básicamente a través de las porinas (voltagedependent anion cannel, VDAC). Dado que los mecanismos de generación del potencial eléctrico en esta membrana se desconocen, generalmente se asume que la compuerta eléctrica de los VDAC siempre está abierta. Sin embargo, el potencial de la membrana mitocondrial externa puede generarse de manera dependiente del metabolismo energético celular mediante diversos mecanismos. La generación de dicho potencial mediante los complejos VDAC-hexocinasa en las células cancerígenas, o la oxidación directa del NADH citosólico en las mitocondrias de la levadura Saccharomyces cerevisiae permiten explicar los efectos de Crabtree y Warburg como una supresión eléctrica de las mitocondrias. Según el modelo desarrollado, la prevención de la formación de los complejos VDAC-hexocinasa por acción de algunos factores podría causar efectos anti-Warburg y anticancerígenos. Además, este potencial positivo generado por los complejos VDAC-creatina-cinasa podría proteger las mitocondrias de los cardiomiocitos y de otras células frente a los niveles tóxicos de calcio en el citosol. Los mecanismos propuestos de generación del potencial de la membrana dependiente del metabolismo energético celular, sugieren que las propiedades eléctricas del VDAC tienen un papel importante en varios procesos fisiológicos y patofisiológicos. © 2018. Acad. Colomb. Cienc. Ex. Fis. Nat.
https://doi.org/10.18257/raccefyn.549
PDF

Citas

Appaix F., Kuznetsov A.V., Usson Y., Kay L., Andrienko T., Olivares J., Kaambre T., Sikk P., Margreiter R., Saks V. (2003). Possible role of cytoskeleton in intracellular arrangement and regulation of mitochondria. Exp Physiol. 88: 175-190.

Avéret N., Aguilaniu H., Bunoust O., Gustafsson L., Rigoulet M. (2002). NADH is specifically channeled through the mitochondrial porin channel in Saccharomyces cerevisiae. J Bioenerg Biomembr. 34 (6): 499-506.

Bakker B.M., Overkamp K.M., van Maris A.J., Kötter P., Luttik M.A., van Dijken J.P., Pronk J.T. (2001). Stoichiometry and compartimentation of NADH metabolism in Saccharomyces cerevisiae. FEMS Microbiol Rev. 25 (1):15-37.

Benz R., Kottke M., Brdiczka D. (1990). The cationically selective state of the mitochondrial outer membrane pore: A study with intact mitochondria and reconstituted mitochondrial porin. Biochim Biophys Acta. 1022: 311-318.

Brdiczka D.G., Zorov D.B., Sheu S.S. (2006). Mitochondrial contact sites: Their role in energy metabolism and apoptosis. Biochim. Biophys. Acta. 1762: 148-163.

Camara A.K.S., Zhou Y., Wen P.C., Tajkhorshid E., Kwok W.M. (2017). Mitochondrial VDAC1: A Key Gatekeeper as Potential Therapeutic Target. Front Physiol. 8: 460.

Carafoli E. (2012). The interplay of mitochondria with calcium: An historical appraisal. Cell Calcium. 52 (1): 1-8.

Colombini M. (1979). A candidate for the permeability pathway of the outer mitochondrial membrane. Nature. 279: 643-645.

Colombini M. (2016). The VDAC channel: Molecular basis for selectivity. Biochim Biophys Acta. 1863 (10): 2498-2502.

Colombini M., Blachly-Dyson E., Forte M. (1996). VDAC, a channel in the outer mitochondrial membrane. Ion Channels. 4:169-202.

Colombini M., Mannella C.A. (2012). VDAC, the early days. Biochim Biophys Acta. 1818 (6): 1438-1443.

Díaz-Ruiz R., Rigoulet M., Devin A. (2011). The Warburg and Crabtree effects: On the origin of cancer cell energy metabolism and of yeast glucose repression. Biochim Biophys Acta. 1807 (6): 568-576.

Dolder M., Walzel B., Speer O., Schlattner U., Wallimann T. (2003). Inhibition of the mitochondrial permeability transition by creatine kinase substrates. Requirement for microcompartimentation. J Biol Chem. 278: 17760-17766.

Earnshaw M.J. (1975). The mechanism of K+-stimulated exogenous NADH oxidation in plant mitochondria. FEBS Lett. 59 (1): 109-112.

Eisner D.A., Caldwell J.L., Kistamás K., Trafford A.W. (2017). Calcium and excitation-contraction coupling in the heart. Circ Res. 121 (2): 181-195.

Hagman A., Säll T., Piškur J. (2014). Analysis of the yeast shortterm Crabtree effect and its origin. FEBS J. 281 (21): 4805- 4814.

Hammad N., Rosas-Lemus M., Uribe-Carvajal S., Rigoulet M., Devin A. (2016). The Crabtree and Warburg effects: Do metabolite-induced regulations participate in their induction? Biochim Biophys Acta. 1857 (8): 1139-1146.

Haridas V., Li X., Mizumachi T., Higuchi M., Lemeshko V.V., Colombini M., Gutterman J.U. (2007). Avicins, a novel plant-derived metabolite lowers energy metabolism in tumor cells by targeting the outer mitochondrial membrane. Mitochondrion. 7 (3): 234-240.

Hodge T., Colombini M. (1997). Regulation of metabolite flux through voltage-gating of VDAC channels. J Membr Biol. 157 (3): 271-279.

Gerencser A.A., Chinopoulos C., Birket M.J., Jastroch M., Vitelli C., Nicholls D.G., Brand M.D. (2012). Quantitative measurement of mitochondrial membrane potential in cultured cells: Calcium-induced de- and hyperpolarization of neuronal mitochondria. J Physiol. 590 (12): 2845-2871.

John S., Weiss J.N., Ribalet B. (2011). Subcellular localization of hexokinases I and II directs the metabolic fate of glucose. PLoS One. 6 (3): e17674.

Kmita H., Budzińska M., Stobienia O. (2003). Modulation of the voltage-dependent anionselective channel by cytoplasmic proteins from wild type and the channel depleted cells of Saccharomyces cerevisiae. Acta Biochim Pol. 50 (2):415-424.

Lemasters J.J. & Holmuhamedov E. (2006). Voltage-dependent anion channel (VDAC) as mitochondrial governator thinking outside the box. Biochim Biophys Acta. 1762 (2):181-190.

Lemasters J.J. & Ramshesh V.K. (2007). Imaging of mitochondrial polarization and depolarization with cationic fluorophores. Methods Cell Biol. 80: 283-295.

Lemasters J.J. (2017). Evolution of voltage-dependent anion channel function: From molecular sieve to governator to actuator of ferroptosis. Front Oncol. 7: 303.

Lemeshko S.V. & Lemeshko V.V. (2000). Metabolically derived potential on the outer membrane of mitochondria: a computational model. Biophys J. 79: 2785-2800.

Lemeshko V.V. (2002). Model of the outer membrane potential generation by the inner membrane of mitochondria. Biophys J. 82: 684-692.

Lemeshko V.V. (2006). Theoretical evaluation of a possible nature of the outer membrane potential of mitochondria. Eur Biophys J. 36: 57-66.

Lemeshko V.V., Haridas V., Quijano Pérez J.C., Gutterman J.U. (2006a). Avicins, natural anticancer saponins, permeabilize mitochondrial membranes. Arch Biochem Biophys. 454(2):114-122.

Lemeshko V., Guzmán F., Patarroyo M.E., Segura C., Orduz S. (2006b) Synthetic peptide having an ionophoric and antimicrobial activity. United States Patent No. 7041647.

Lemeshko V.V. (2014). VDAC electronics: 1. VDAC-hexo(gluco) kinase generator of the mitochondrial outer membrane potential. Biochim Biophys Acta. 1838: 1362-1371.

Lemeshko V. (2015). The Warburg effect as a VDAC-hexokinasemediated

electrical suppression of mitochondrial energy metabolism. FASEB J. 29 (Suppl 1): 725-27.

Lemeshko V.V. (2016). VDAC electronics: 3. VDAC-creatine kinase-dependent generation of the outer membrane potential in respiring mitochondria. Biochim Biophys Acta. 1858 (7 PtA):1411-1418.

Lemeshko V.V. (2017a). The mitochondrial outer membrane potential as an electrical feedback control of cell energy metabolism. En: T.K. Rostovtseva (Ed.), Molecular Basis for Mitochondrial Signaling, Springer International Publishing, New York, Chapter 9: 217-250.

Lemeshko V.V. (2017b). VDAC electronics: 4. Novel electrical mechanism and thermodynamic estimations of glucose repression of yeast respiration. Biochim Biophys Acta. 1859 (11):2213-2223.

Liu M.Y. & Colombini M. (1992). A soluble mitochondrial protein increases the voltage dependence of the mitochondrial channel, VDAC. J Bioenerg Biomembr. 24: 41-46.

Luttik M.A., Overkamp K.M., Kötter P., de Vries S., van Dijken J.P., Pronk J.T. (1998). The Saccharomyces cerevisiae NDE1 and NDE2 genes encode separate mitochondrial NADH dehydrogenases catalyzing the oxidation of cytosolic NADH. J Biol Chem. 273 (38): 24529-24534.

Maldonado E.N., Patnaik J., Mullins M.R., Lemasters J.J. (2010). Free tubulin modulates mitochondrial membrane potential in cancer cells. Cancer Res. 70 (24): 10192-10201.

Maldonado E.N., Sheldon K.L., DeHart D.N., Patnaik J., Manevich Y., Townsend D.M., Bezrukov S.M., Rostovtseva T.K., Lemasters J.J. (2013). Voltage-dependent anion channels modulate mitochondria metabolism in cancer cells: Regulation by free tubulin and erastin. J Biol Chem. 288 (17): 11920-11929.

Mannella C.A. (1982). Structure of the outer mitochondrial membrane: Ordered arrays of porelike subunits in outermembrane fractions from Neurospora crassa mitochondria. J Cell Biol. 94: 680-687.

Marín-Hernández A., Rodríguez-Enríquez S., Vital-González P.A., Flores-Rodríguez F.L., Macías-Silva M., Sosa-Garrocho M., Moreno-Sánchez R. (2006). Determining and understanding the control of glycolysis in fast-growth tumor cells. Flux control by an overexpressed but strongly product-inhibited hexokinase. FEBS J. 273 (9): 1975-1988.

Mastrangelo D., Pelosi E., Castelli G., Lo-Coco F., Testa U. (2017). Mechanisms of anti-cancer effects of ascorbate: Cytotoxic activity and epigenetic modulation. Blood Cells Mol Dis pii. S1079-9796 (17): 30327-3.

O’Gorman E., Beutner G., Dolder M., Koretsky A.P., Brdiczka D., Wallimann T. (1997). The role of creatine kinase in inhibition of mitochondrial permeability transition. FEBS Lett. 414: 253-257.

Ohnishi T., Kawaguchi K., Hagihara B. (1966). Preparation and some properties of yeast Mitochondria. J Biol Chem. 241 (8): 1797-1806.

Orduz S., Lemeshko V. (2016). Péptido sintético policatiónico como agente ionofórico, antimicrobiano, antitumoral e insecticida. Rad. Gaceta 701, No. 174, 31 de julio de 2014, Superintendencia de Industria y Comercio de Colombia. Res. No.: 22123.

Pfeiffer T., Morley A. (2014). An evolutionary perspective on the Crabtree effect. Front Mol Biosci. 1: 17.

Pinz I., Ostroy S.E., Hoyer K., Osinska H., Robbins J., Molkentin J.D., Ingwall J.S. (2008). Calcineurin-induced energy wasting in a transgenic mouse model of heart failure. Am J Physiol Heart Circ Physiol. 294 (3): H1459-H1466.

Porcelli A.M., Ghelli A., Zanna C., Pinton P., Rizzuto R., Rugolo M. (2005). pH difference across the outer mitochondrial membrane measured with a green fluorescent protein mutant. Biochem Biophys Res Commun. 326: 799-804.

Rigoulet M., Aguilaniu H., Avéret N., Bunoust O., Camougrand N., Grandier-Vazeille X., Larsson C., Pahlman I.L., Manon S., Gustafsson L. (2004). Organization and regulation of the cytosolic NADH metabolism in the yeast Saccharomyces cerevisiae. Mol Cell Biochem. 256-257(1-2): 73-81.

Rizzuto R., De Stefani D., Raffaello A., Mammucari C. (2012). Mitochondria as sensors and regulators of calcium signalling. Nat Rev Mol Cell Biol. 13 (9): 566-578.

Rostovtseva T., Colombini M. (1997). VDAC channels mediate and gate the flow of ATP: Implications for the regulation of mitochondrial function. Biophys J. 72 (5): 1954-1962.

Rostovtseva T.K., Komarov A., Bezrukov S.M., Colombini M. (2002). Dynamics of nucleotides in VDAC channels: Structure- pecific noise generation. Biophys J. 82 (1 Pt 1):193-205.

Rostovtseva T.K., Bezrukov S.M. (2012). VDAC inhibition by tubulin and its physiological implications. Biochim Biophys Acta. 1818 (6): 1526-1535.

Rostovtseva T.K., Gurnev P.A., Protchenko O., Hoogerheide D.P., Yap T.L., Philpott C.C., Lee J.C., Bezrukov S.M. (2015). α-Synuclein shows high affinity interaction with voltage-dependent anion channel, suggesting mechanisms of mitochondrial regulation and toxicity in Parkinson disease. J Biol Chem. 290 (30):18467-18477.

Rostovtseva, T.K., Hoogerheide D.P., Rovni A., Bezrukov S.M. (2017). Lipids in regulation of the mitochondrial outer membrane permeability, bioenergetics, and metabolism. In: T.K. Rostovtseva (Ed.), Molecular Basis for Mitochondrial Signaling, Springer International Publishing, New York, Chapter. 8: 185-215.

Saks V., Guzun R., Timohhina N., Tepp K., Varikmaa M., Monge C., Beraud N., Kaambre T., Kuznetsov A., Kadaja L., Eimre M., Seppet E. (2010). Structure–function relationships in feedback regulation of energy fluxes in vivo in health and disease: Mitochondrial interactosome. Biochim Biophys Acta. 1797 (6-7): 678-697.

Sen U., Shenoy P.S., Bose B. (2017). Opposing effects of low versus high concentrations of water-soluble vitamins/dietary ingredients vitamin C and niacin on colon cancer stem cells (CSCs). Cell Biol Int. 41 (10): 1127-1145.

Shoshan-Barmatz V., Ben-Hail D., Admoni L., Krelin Y., Tripathi S.S. (2015). The mitochondrial voltage-dependent anion channel 1 in tumor cells. Biochim Biophys Acta. 1848 (10 PtB): 2547-2575.

Shoshan-Barmatz V., Krelin Y., Shteinfer-Kuzmine A., Arif T. (2017). Voltage-dependent anion channel 1 as an emerging drug target for novel anti-cancer therapeutics. Front Oncol.7: 154.

Shoshan-Barmatz V., Krelin Y., Shteinfer-Kuzmine A. (2018). VDAC1 functions in Ca2+ homeostasis and cell life and death in health and disease. Cell Calcium. 69: 81-100.

Simson P., Jepihhina N., Laasmaa M., Peterson P., Birkedal R., Vendelin M. (2016). Restricted ADP movement in cardiomyocytes: Cytosolic diffusion obstacles are complemented with a small number of open mitochondrial voltagedependent anion channels. J Mol Cell Cardiol. 97: 197-203.

Timohhina N., Guzun R., Tepp K., Monge C., Varikmaa M., Vija H., Sikk P., Kaambre T., Sackett D., Saks V. (2009). Direct measurement of energy fluxes from mitochondria into cytoplasm in permeabilized cardiac cells in situ: Some evidence for mitochondrial interactosome. J Bioenerg Biomembr. 41: 259-275.

Vander Heiden M.G., Chandel N.S., Li X.X., Schumacker P.T., Colombini M., Thompson C.B. (2000). Outer mitochondrial membrane permeability can regulate coupled respiration and cell survival. Proc Natl Acad Sci USA. 97 (9): 4666-4671.

Vazeille X., Larsson C., Pahlman I.L., Manon S., Gustafsson L. (2004) Organization and regulation of the cytosolic NADH metabolism in the yeast Saccharomyces cerevisiae. Mol Cell Biochem. 256-257 (1-2): 73-81.

Wallimann T., Tokarska-Schlattner M., Schlattner U. (2011). The creatine kinase system and pleiotropic effects of creatine. Amino Acids. 40: 1271-1296.

Wilson J.E. (1997). Homologous and heterologous interactions between hexokinase and mitochondrial porin: Evolutionary implications. J Bioenerg Biomembr. 29 (1): 97-102.

Xia J., Xu H., Zhang X., Allamargot C., Coleman K.L., Nessler R., Frech I., Tricot G., Zhan F. (2017). Multiple myeloma tumor cells are selectively killed by pharmacologicallydosed ascorbic acid. EBioMedicine. 18: 41-49.

Zizi M., Forte M., Blachly-Dyson E., Colombini M. (1994). NADH regulates the gating of VDAC, the mitochondrial outer membrane channel. J Biol Chem. 269 (3): 1614-1616.

Zorova L.D., Popkov V.A., Plotnikov E.Y., Silachev D.N., Pevzner I.B., Jankauskas S.S., Babenko V.A., Zorov S.D., Balakireva A.V., Juhaszova M, Sollott S.J., Zorov D.B. (2017). Mitochondrial membrane potential. Anal Biochem pii. S0003-2697 (17):30293-2.

Declaración de originalidad y cesión de derechos de autor

Los autores declaran:

  1. Los datos y materiales de referencia publicados han sido debidamente identificados con sus respectivos créditos y han sido incluidos en las notas bibliográficas y citas que así se han identificado y que de ser requerido, cuento con todas las liberaciones y permisos de cualquier material con derechos de autor.
  2. Todo el material presentado está libre de derechos de autor y acepto plena responsabilidad legal por cualquier reclamo legal relacionado con la propiedad intelectual con derechos de autor, exonerando completamente de responsabilidad a la Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales.
  3. Este trabajo es inédito y no será enviado a ninguna otra revista mientras se espera la decisión editorial de esta revista. Declaro que no hay ningún conflicto de intereses en este manuscrito.
  4. En caso de publicación de este artículo, todos los derechos de autor son transferidos a la Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, por lo que no puede ser reproducido de ninguna forma sin el permiso expreso de la misma.
  5. Mediante este documento, si el artículo es aceptado para publicación por la Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, la Revista asume el derecho de editar y publicar los artículos en índices o bases de datos nacionales e internacionales para académicos y uso científico en formato papel, electrónico, CD-ROM, internet ya sea del texto completo o cualquier otra forma conocida conocida o por conocer y no comercial, respetando los derechos de los autores.

Transferencia de derechos de autor

En caso de que el artículo sea aprobado para su publicación, el autor principal en representación de sí mismo y sus coautores o el autor principal y sus coautores deberán ceder los derechos de autor del artículo correspondiente a la Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, excepto en los siguientes casos:

Los autores y coautores se reservan el derecho de revisar, adaptar, preparar trabajos derivados, presentaciones orales y distribución a algunos colegas de reimpresiones de su propio trabajo publicado, si se otorga el crédito correspondiente a la Revista de la Academia Colombiana de Ciencias. Exactas, Físicas y Naturales. También está permitido publicar el título de la obra, resumen, tablas y figuras de la obra en los sitios web correspondientes de los autores o sus empleadores, dando también crédito a la Revista.

Si el trabajo se ha realizado bajo contrato, el empleador del autor tiene el derecho de revisar, adaptar, preparar trabajos derivados, reproducir o distribuir en papel el trabajo publicado, de manera segura y para uso exclusivo de sus empleados.

Si la Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales fuera solicitada por un tercero para el uso, impresión o publicación específica de artículos ya publicados, la Revista debe obtener el permiso expreso del autor y coautores de la trabajo o del empleador excepto para uso en aulas, bibliotecas o reimpreso en un trabajo colectivo. La Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales se reserva el posible uso en su portada de figuras entregadas con los manuscritos.

La Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales no puede reclamar ningún otro derecho que no sea el de autor.