Abstract
In the first part, we remind Fréchet’s testimonies about the approach of his early work (1904-1906) in the emerging fields of Functional Analysis and General Analysis, in relation to his idea of introducing a topological structure in an abstract space. In the second part, we highlight the influence that had on this idea, the algebraic point of view of the time of extending the Cantorian notions to an abstract space with a finite group structure. Fréchet took advantage of techniques such as the “composition mode” between the elements of the space, to axiomatize operations and structures of the “class ” with sequential convergence, the “class ” with neighborhood system, the “class ” with “écart” (metric). Then, new historical data are used to reaffirm the proximity of the philosophical conceptions underlying these investigations with the ideas of Leibniz, specifically with regard to the method of “analysis of principles”. The third part examines the contribution of Hausdorff of 1912 and 1914 to the establishment of the neighborhood axiomatics for the topology of an abstract space. Taking into account the observations of Weyl and Bourbaki that Hausdorff drew on Hilbert, we examine the system of axioms for the neighborhoods of the plane introduced by Hilbert in two 1902 papers devoted to the problem of the space continuity. As regards Fréchet’s influence in Hausdorff, we explore the connections of Hausdorff’s “topological space” based on neighborhoods with the notions of metric, sequential convergence and neighborhoods, proposed years earlier by Fréchet. From the beginning, Hausdorff argued that the topology of the separable space had the characteristics of generality and formal rigor that allowed it to adapt to applications better than others. It is shown that all this was consistent with the ideals of simplicity, unity and economy of thought Hausdorff had acquired in his early philosophical works. © 2017. Acad. Colomb. Cienc. Ex. Fis. Nat.References
Alexandroff, P. (1961). Elementary Concepts of Topology. Dover: New York. (Traducción de Einfachste Grundbegriffe der Topologie. Springer, 1932).
Alexandroff, P. S, Fedorchuk, V. V. (1978). The Main Aspects in the Development of Set-Theoretical Topology. Russian Math. Surveys. 33: 1-53.
Alexandroff, P. S., Urysohn, P. S. (1929). Mémoire sur les espaces topologiques compacts. Ver. Kon. Akad. Wetensch. Amsterdam. 14: 1-96.
Anacona, M. P. (2017). La teoría de conjuntos y los números reales en el estructuralismo de Bourbaki. Tesis Doctoral. Cádiz: Universidad de Cádiz.
Arboleda, L. C. (1979). Les debuts de l’École topologique soviétique: notes sur les lettres de Paul S. Alexandrov et Paul S. Urysohn à Maurice Fréchet. Archive for History of Exact Sciencies. 32: 73-89.
Arboleda, L. C. (1980a). Contribution à l’étude des premières recherches topologiques d’après l’oeuvre et la correspondance de Maurice Fréchet. Tesis de Doctorado. École d’Hautes Études en Sciences Sociales. Paris.
Arboleda, L. C. (1980b). Las primeras investigaciones sobre los espacios topológicos. Sociedad Colombiana de Matemáticas. X Coloquio Colombiano de Matemáticas, Paipa.
Arboleda, L. C. (1982). Consideraciones metodológicas sobre el aporte de M. Fréchet a la topología general. Actualités mathématiques: actes du VIe Congrès du regroupement des mathématiciens d’expression latine. Paris: Gauthier-Villars; 493- 499.
Arboleda, L. C. (1984). Sobre los fundamentos de la teoría de los espacios compactos. Asclepio, Madrid. 35: 123-157.
Arboleda, L. C. (2007). Modalidades constructivas y objetivación del cuerpo de los reales. Revista Brasileira de Historia da Matemática, Especial n°1: 215-230.
Arboleda, L. C., Recalde, L. C. (2003). Fréchet and the Logic of the Constitution of Abstract Spaces from Concrete Reality. Synthese. 134: 245-272.
Arboleda, L. C. (2012). Objetos Matemáticos y Prácticas Constitutivas: La Génesis de la Topología de Vecindades. Notae Philosophicae Scientiae Formalis. 1: 32-44.
Arhangel’skii, A. V. y Dranishnikov, A. N. (1997). P. S. Alexandroff and Topology: an introductory note. Topology and its Applications, 80: 1-6.
Aull, C. E., Lowen, R. (eds.) (1997). Handbooks of the History of General Topology. Vol.1. Dordrecht: Springer.
Bourbaki, N. (1971). Topologie Générale. Vol. 1, chapitres 1 à 4. Paris: Hermann.
Bourbaki, N. (1974). Éléments d’histoire des mathématiques. Paris: Hermann.
Cartan, H. (1937a). Théorie des filtres. C. R. Acad. Sci. Paris. 205:595-598.
Cartan, H. (1937b). Filtres et ultrafiltres. C. R. Acad. Sci. Paris. 206: 777-779.
De Risi, V. (ed.) (2015). Mathematizing Space. The Objects of Geometry from Antiquity to the Early Modern Age. Heidelberg: Birkhäuser.
Dieudonné, J. (1981). History of functional analysis. Amsterdam: North-Holland.
Dugac, P. (1984). Histoire des espaces complets. Revue d’Histoire des Sciences. 37: 3-28.
Dugac, P. (2003). Histoire de l’Analyse. Autour de la notion de limite et de ses voisinages. Paris: Vuibert.
Epple, M., Herrlich, H., Husek, M., Preuβ, G., Purkert, W., Scholz, E. (2002). Zum Begriff des topologischen Raumes. En: Felix Hausdorff: Gesammelte Werke, Bd. II. Berlin:Springer.
Epple, M. (2006): Felix Hausdorff’s Considered Empiricism. En J. Ferreirós, J. Gray (Ed) (2006): The Architecture of Modern Mathematics (263-289). New York: Oxford University Press.
Fréchet, M. (1904). Généralisation d’un théorème de Weierstrass. C. R. Acad. Sci. Paris. 139: 848-850.
Fréchet, M. (1906). Sur quelques points du calcul fontionnel. Rendiconti Circolo Mat. Palermo. 22: 1-74.
Fréchet, M. (1928). Les Espaces Abstraits et leur théorie considérée comme introduction à l’Analyse Générale. Paris: Gauthier-Villars.
Fréchet, M. (1933). Notice sur les travaux scientifiques de Maurice Fréchet. Paris: Hermann.
Fréchet, M. (1941). L’analyse générale et la question des fondements. En: Gonseth, F. (ed). (1941). Les entretiens de Zurich sur les fondements et la méthode des sciences mathématiques. Zurich: Leemann. p. 53-81.
Fréchet, M. et Halbwachs, M. (1924). Les calcul de probabilités à la portée de tous. Paris: Dunod.
Hadamard, J. (1912). Le calcul fonctionnel. Enseignement mathématique. 14: 5-18.
Halbwachs, M. (1906). Leibniz. Collection Les Philosophes. Paris: Delaplane. Segunda edición aumentada: Paris, Mellotée, 1928. Tercera edición: Paris, Mellotté, 1950.
Hausdorff, F. (1914). Grundzüge der Mengenlehre. Leipzig: Veit.
Hilbert, D. (1897). Zum Gedächtnis an Karl Weierstrass. En D.
Hilbert (1970). Gesammelte Abhandlungen (vol. 3). Berlin:Springer-Verlag.
Hilbert, D. (1899). Grundlagen der Geometrie. Leipzig: Teubner.
Hilbert, D. (1902): Über die Grundlagen der Geometrie. Göttinger Nachrichten. 4: 233-241.
Hilbert, D. (1902a). The Foundations of Geometry. Chicago: Open Court.
Hilbert, D. (1903): Über die Grundlagen der Geometrie. Math. Annalen. 56: 381-422.
Hirsch, G. (1978). Topologie. En J. Dieudonné. (Ed). Abrégé d’Histoire des mathématiques. 2: 211-266. Paris: Hermann. James, I. M. (Ed) (1999). History of Topology. Amsterdam: Elsevier.
Katz, V., Parshall, K. H. (2014). Taming the Unknown: A History of Algebra from Antiquity to the Early Twentieth Century. Princeton: Princeton University Press.
Koestsier, T. Y Van Mill, J. (1999). By their fruits ye shall know them: Some remarks on the interaction of general topology with other areas of mathematics. En I. M. James (1999):199-239.
Majer, U. (2006). The relation of Logic and Intuition in Kant’s Philosophy of Science, particularly Geometry. Western Ontario series in Philosophy of Science. 70: 47-66.
Manheim, J. (1964). The Genesis of point set Topology. Rinehart: Oxford.
Purkert, W. (2008). The Double Life of Felix Hausdorff/Paul Mongré. Math. Intellingencer. 30: 36-50.
Pier, J.-P. (1980). Historique de la notion de compacité. HistoriaMathematica. 7: 425-443.
Rodríguez, L. (2015). Frigyes Riesz and the emergence of general topology. The roots of ‘topological space’ in geometry. Archive for History of Exact Sciences, 69: 55-102.
Scholz, E. (1996). Logische Ordnungen im Chaos: Hausdorffs frühe Beiträge zur Mengenlehre. En E. Brieskorn (Ed) (1966). Felix Hausdorff zum Gedächtnis, Vol. 1, Aspekte seines Werkes (107-134). Wiesbaden: Vieweg.
Séguier, J. A. de (1904). Théorie des groupes finis. Éléments de la théorie des groupes abstraits. Paris: Gauthier-Villars. Tarrés Freixenet, J. (1994). La topología general desde sus comienzos hasta Hausdorff. Historia de la matemática en el siglo XIX (2ª. Parte). Madrid: Real Academia de Ciencias Exactas, Físicas y Naturales.
Taylor, A. E. (1982). A Study of Maurice Fréchet: I. His Early Work on Point Set Theory and the Theory of Functionals. Archive for History of Exact Sciences. 27: 233-295.
Taylor, A. E. (1985). A Study of Maurice Fréchet: II. Mainly about his Work on General topology, 1909-1928. Archive for History of Exact Sciences. 34: 279-380.
Weil, A. (1937). Sur les espaces à structure uniforme et sur la topologie générale. Publications de l’Institut de mathématiques de l’Université de Strasbourg. Paris: Hermann.
Weyl, H. (1949). David Hilbert and his Mathematical Work. Bulletin of American Mathematical Society. 50: 612-654.
Zalamea, F. (2009). Filosofía sintética de las matemáticas contemporáneas. Bogotá: Universidad Nacional de Colombia.
Declaration of originality and transfer author's rights
The authors declare:
- The published data and reference materials have been duly identified with their respective credits and have been included in the bibliographic notes and citations that have been so identified and that should it be required, I have all releases and permissions from any copyrighted material.
- All material presented is free from any copyright and that I accept full legal responsibility for any legal claims relating to copyrighted intellectual property, fully exonerating from responsibility the Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales.
- This work is unpublished and will not be sent to any other journal while waiting for the editorial decision of this journal. I declare that there is no conflict of interest in this manuscript.
- In case of publication of this article, all author´s rights are transferred to the Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, and so cannot be reproduced in any form without the express permission of it.
- By means of this document, if the article is accepted for publication by the Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, the Revista assumes the right to edit and publish the articles in national and international indices or data bases for academic and scientific use in paper, electronic, CD-ROM, internet form either of the complete text or any other known form known or to be known and non-commercial, respecting the rights of the authors.
Transfer of author rights
In case the article is approved for publication, the main author in representation of himself and his co-authors or the main author and his co-authors must cede the author rights of the corresponding article to the Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, except in the following cases:
The authors and co-authors will retain the right to revise, adapt, prepare derived works, oral presentations, and distribution to some colleagues of reprints of their own published work, if the corresponding credit is given to the Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales. It is also permissible to publish the title of the work, summary, tables, and figures of the work in the corresponding web sites of the authors or their employers, also giving credit to the Revista.
If the work has been realized under contract, the author’s employer has the right to revise, adapt, prepare derivative works, reproduce, or distribute in hard copy the published work, in a secure manner and for the exclusive use of his employees.
If the Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales were approached for permission by a third party for using, printing, or publishing specifically articles already published, the Revista must obtain the express permission of the author and co-authors of the work or of the employer except for use in classrooms, libraries, or reprinted in a collective work. The Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales reserves the possible use in its front cover of figures submitted with the manuscripts.
No other right, other than the author’s right, can be claimed by the Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales.