Adaptive immune response in chronic infection by Trypanosoma cruzi
PDF (Español (España))

How to Cite

Gonzalez, J. M., Cuéllar, A., & J. Puerta, C. (2018). Adaptive immune response in chronic infection by Trypanosoma cruzi. Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 41(161), 456–465. https://doi.org/10.18257/raccefyn.506

Downloads

Download data is not yet available.

Métricas Alternativas


Dimensions

Abstract

Trypanosoma cruzi infection causes Chagas disease, which presents an acute phase where the activation of the immune system can help to control the parasite. However, the parasite persists at a low level leading to a chronic phase where 70% of the infected individuals remain asymptomatic, and the others have tissue involvement, mainly a chronic inflammatory cardiomyopathy. During the infection process, the immune response plays an important role in protection, but it has also been associated with pathogenesis, especially during the chronic phase. The studies carried out by the Chagas disease research group from Universidad de los Andes and the Pontificia Universidad Javeriana in Colombia, have been focused on dissecting the adaptive immune response induced against T. cruzi. Here we summarize and analyze the results of the evaluation of the humoral immune response against the KMP-11 protein from the parasite. We also describe the cellular immune response against T. cruzi in peripheral blood of patients with chronic Chagas heart disease. We evaluated the possible role of peptide-specific antibodies and the percentage of peripheral blood antigen-specific lymphocytes and their surface markers using a nine amino acids peptide from the KMP-11 protein termed TcTLE. © 2017. Acad. Colomb. Cienc. Ex. Fis. Nat.
https://doi.org/10.18257/raccefyn.506
PDF (Español (España))

References

Acevedo, G.R., Longhi, S.A., Bunying, A., Sabri, N., Atienza, A., Zago, M.P., Santos, R., Judkowski, V.A., Pinilla, C., Gómez, K.A. (2017). Methodological approach to the ex vivo expansion and detection of T. cruzi-specific T cells from chronic Chagas disease patients. PLoS One. 12:e0178380. doi:10.1371/journal.pone.0178380.

Albareda, M.C., Olivera, G.C., Laucella, S.A., Álvarez, M.G., Fernández, E.R., Lococo, B., Viotti, R., Tarleton, R.L., Postan M. (2009) Chronic human infection with Trypanosoma cruzi drives CD4+ T cells to immune senescence. J Immunol. 183 (6):4103-4108.

Albareda, M.C., De, Rissio, A.M., Tomas, G., Serjan, A., Álvarez, M.G., Viotti, R., Fichera, L.E., Esteva, M.I., Potente, D, Armenti, A., Tarleton, R.L., Laucella, S.A. (2013). Polyfunctional T cell responses in children in early stages of chronic Trypanosoma cruzi infection contrast with monofunctional responses of long- erm infected adults. PLoS Negl Trop Dis. 7 (12): e2575

Argüello, R., Albareda, M., Álvarez, M., Bertocchi, G., Armenti, A., Vigliano, C., Meckert, P., Tarleton, R., Laucella, S. (2012). Inhibitory Receptors Are Expressed by Trypanosoma cruzi-pecific Effector T Cells and in Hearts of Subjects with Chronic Chagas Disease. PLoS ONE. 7:p.e35966

Barrias, E.S., de Carvalho, T.M., De Souza, W. (2013). Trypanosoma cruzi: Entry into Mammalian Host Cells and Parasitophorous Vacuole Formation. Front Immunol. 4: 186. doi: 10.3389/fimmu.2013.00186. eCollection 2013.

Bellotti, G., Bocchi, E.A., de Moraes, A.V., Higuch,i M.L,, Barbero-Marcial, M., Sosa, E., Esteves-Filho, A., Kalil, R., Weiss, R., Jatene, A., Pileggi, F. (1996) In vivo detection of Trypanosoma cruzi antigens in hearts of patients with chronic Chagas’ heart disease. Am Heart J. 131: 301-307.

Benvenuti, L.A., Higuchi, M.L., Reis, M.M. (2000). Upregulation of adhesion molecules and class I HLA in the myocardium of chronic chagasic cardiomyopathy and heart allograft rejection, but not in dilated cardiomyopathy. Cardiovasc Pathol. 9: 111-117.

Bern, C., Montgomery, S.P., Herwaldt, B.L., Rassi, A. Jr., Marin- Neto, J.A., Dantas, R.O., Maguire, J.H., Acquatella, H., Morillo, C., Kirchhoff, L.V., Gilman, R.H., Reyes, P.A., Salvatella, R., Moore, A.C. (2007). Evaluation and treatment of Chagas disease in the United States: A systematic review. JAMA. 298: 2171-2181.

Bern C. (2015). Chagas’ Disease. N Engl J Med. 373: 456-466. doi: 10.1056/NEJMra1410150.

Beltz, L.A., Kierszenbaumm F. (1987). Suppression of human lymphocyte responses by Trypanosoma cruzi. Immunology. 60 (2): 309-315.

Brener, Z. (1973). Biology of Trypanosoma cruzi. Annu Rev Microbiol. 27: 347-382.

Campo, V.L., Martins-Teixeira, M.B., Carvalho, I. (2016). Trypanosoma cruzi Invasion into Host Cells: A Complex Molecular Targets Interplay. Mini Rev Med Chem. 16:1084-1097.

Castillo-Riquelme, M., Guhl, F., Turriago, B., Pinto, N., Rosas, F., Martínez, M.F., Fox-Rushby, J., Davies, C., Campbell-Lendrum, D. (2008). The costs of preventing and treating Chagas disease in Colombia. PLoS Negl Trop Dis. 2: e336. doi: 10.1371/journal.pntd.0000336.

Cuéllar, A., Santander, S.P., Thomas, M.C., Guzmán, F., Gómez, A., López, M.C., Puerta, C.J. (2008). Monocytederived dendritic cells from chagasic patients vs healthy donors secrete differential levels of IL-10 and IL- 12 when stimulated with a protein fragment of Trypanosoma cruzi heat-shock protein-70. Immunol Cell Biol. 86: 255-260.

Cuéllar, A., Rojas, F., Bolaños, N., Díez, H., Thomas, M.C., Rosas, F., Velasco, V., López, M.C., González, J.M., Puerta, C. (2009). Natural CD4(+) T-cell responses against Trypanosoma cruzi KMP-11 protein in chronic chagasic patients. Immunol Cell Biol. 87: 149-153. doi: 10.1038/icb.2008.76. Erratum in: Immunol Cell Biol. 2009. 7: 108.

de Freitas, V.L., da Silva, S.C., Sartori, A.M., Bezerra, R.C., Westphalen, E.V., Molina, T.D., Teixeira, A.R., Ibrahim, K.Y., Shikanai-Yasuda, M.A. (2011). Real-time PCR in HIV/Trypanosoma cruzi coinfection with and without Chagas disease reactivation: Association with HIV viral load and CD4 level. PLoS Negl Trop Dis. 5: e1277. doi: 10.1371/journal.pntd.0001277

de Souza, W., de Carvalho, T.M., Barrias, E.S. (2010) Review on Trypanosoma cruzi: Host Cell Interaction. Int J Cell Biol. 2010. pii: 295394. doi: 10.1155/2010/295394

Dey, N., Sinha, M., Gupta, S., González, M.N., Fang, R., Endsley, J.J., Luxon, B.A., Garg, N.J. (2014). Caspase-1/ASC inflammasome-mediated activation of IL-1β-ROS-NF-κB pathway for control of Trypanosoma cruzi replication and survival is dispensable in NLRP3-/- macrophages. PLoS One. 9: e 111539.

Díaz-Soto, J, C., Lasso, P., Guzmán, F., Forero-Shelton, M., Thomas, M.C., López, M.C., Guhl, F., Cuéllar, A., Puerta, C.J., González, J.M. (2012). Rabbit serum against K1 peptide, an immunogenic epitope of the Trypanosoma cruzi KMP-11, decreases parasite invasion to cells. Acta Trop. 123: 224-229. doi: 10.1016/j.actatropica.2012.05.015.

Díez, H., López, M.C., Thomas, M.C., Guzmán, F., Rosas, F., Velazco, V., González, J.M., Puerta, C. (2006). Evaluation of IFN-gamma production by CD8 T lymphocytes in response to the K1 peptide from KMP-11 protein in patients infected with Trypanosoma cruzi. Parasite Immunol. 28: 101-105.

Díez, H., Guzmán, F., Alba, M.P., Cuéllar, A., Thomas, M.C., López, M.C., Rosas, F., Velasco, V., González, J.M., Patarroyo, M.E., Puerta, C.J. (2007). Immunological and structural characterization of an epitope from the Trypanosoma cruzi KMP-11 protein. Peptides. 28: 1520-1526.

Dos-Santos, A.L., Carvalho-Kelly, L.F., Dick, C.F., Meyer- Fernandes, J.R. (2016). Innate immunomodulation to trypanosomatid parasite infections. Exp Parasitol. 167: 67- 75. doi: 10.1016/j.exppara.2016.05.005.

Ferrans, V.J., Milei, J., Tomiata, Y., Storino, R.A. (1988). Basement membrane thickening in cardiac myocytes and capillaries in chronic Chagas’ disease. Am J Cardiol. 61: 1137-1140.

Finkelsztein, E.J., Díaz-Soto, J.C., Vargas-Zambrano, J.C., Suesca, E., Guzmán, F., López, M.C., Thomas, M.C., Forero-Shelton, M., Cuéllar, A., Puerta, C.J., González, J.M. (2015). Altering the motility of Trypanosoma cruzi with rabbit polyclonal anti-peptide antibodies reduces infection to susceptible mammalian cells. Exp Parasitol. 150: 36-43. doi: 10.1016/j.exppara.2015.01.007

Flechas, I.D., Cuéllar, A., Cucunubá, Z.M., Rosas, F., Velasco, V., Steindel, M., Thomas, M.C., López, M.C., González, J.M., Puerta C.J. (2009). Characterising the KMP-11 and HSP-70 recombinant antigens’ humoral immune response profile in chagasic patients. BMC Infect Dis. 25: 186. doi: 10.1186/1471-2334

Franchin, G., Pereira-Chioccola, V.L., Schenkman, S., Rodrigues, M.M. (1997). Passive transfer of a monoclonal antibody specific for a sialic acid-dependent epitope on the surface of Trypanosoma cruzi trypomastigotes reduces infection in mice. Infect. Immun. 65: 2548-2554.

Giraldo, N.A., Bolaños, N.I., Cuéllar, A., Guzmán, F., Uribe, A.M., Bedoya, A., Olaya, N., Cucunubá, Z.M., Roa, N., Rosas, F., Velasco, V., Puerta, C.J., González, J.M. (2011). Increased CD4+/CD8+ double-positive T cells in chronic Chagasic patients. PLoS Negl Trop Dis. 5: e1294. doi: 10.1371/journal.pntd.0001294.

Giraldo, N.A., Bolaños, N.I., Cuéllar, A., Roa, N., Cucunubá, Z., Rosas, F., Velasco, V., Puerta, C.J., González, J.M. (2013). T lymphocytes from chagasic patients are activated but lack proliferative capacity and down-regulate CD28 and CD3ζ. PLoS Negl Trop Dis. 7: e2038. doi: 10.1371/journal.pntd.0002038

Klahr, J.I., Uribe, A.M., Roa, N., González, J.M. (2016). Inmunidad celular en la patogénesis de la cardiopatía chagásica crónica. Rev Col Cardiol. 23: 568-575. doi: 10.1016/j.rccar.2016.04.017

Krettli, A.U., Brener, Z. (1976). Protective effects of specific antibodies in Trypanosoma cruzi infections. J. Immunol. 116: 755-760.

Lages-Silva, E., Ramírez, L.E., Krettli, A.U., Brener, Z. (1987). Effect of protective and non-protective antibodies in the phagocytosis rate of Trypanosoma cruzi blood forms by mouse peritoneal macrophages. Parasite Immunol. 9: 21-30.

Lasso, P., Mesa, D., Cuéllar, A., Guzmán, F., Bolaños, N., Rosas, F., Velasco, V., Thomas, M.C., López, M.C., González, J.M., Puerta, C.J. (2010). Frequency of specific CD8+ T cells for a promiscuous epitope derived from Trypanosoma cruzi KMP-11 protein in chagasic patients. Parasite Immunol. 32: 494-502. doi: 10.1111/j.1365-3024.2010.01206.x

Lasso, P., Mesa, D., Bolaños, N., Cuéllar, A., Guzmán, F., Cucunubá, Z., Rosas, F., Velasco, V., Thomas, M.C., López, M.C., González, J.M., Puerta, C.J. (2012). Chagasic patients are able to respond against a viral antigen from influenza virus. BMC Infect Dis. 12: 198. doi: 10.1186/1471-2334-12-198

Lasso, P., Mateus, J., Pavía, P., Rosas, F., Roa, N., Thomas, M.C., López, M.C., González, J.M., Puerta, C.J., Cuéllar, A. (2015). Inhibitory Receptor Expression on CD8+ T Cells Is Linked to Functional Responses against Trypanosoma cruzi Antigens in Chronic Chagasic Patients. J Immunol. 195 (8):3748-3758. doi: 10.4049/jimmunol.1500459

Laucella, S.A., Postan, M., Martin, D., Hubby Fralish, Bm, Albareda, M, C., Álvarez, M.G., Lococo, B., Barbieri, G., Viotti, R.J., Tarleton, RL. (2004). Frequency of interferongamma -producing T cells specific for Trypanosoma cruzi inversely correlates with disease severity in chronic human Chagas disease. J Infect Dis. 189: 909-918.

Ley, V., Robbins, E.S., Nussenzweig, V., Andrews, N.W. (1990). The exit of Trypanosoma cruzi from the phagosome is inhibited by raising the pH of acidic compartments. J Exp Med. 171: 401-413.

Li, Z., Wang, C. (2008). KMP-11, a Basal Body and Flagellar Protein, Is Required for Cell Division in Trypanosoma brucei. Eukaryotic Cell. 7: 1941-1950.

Lima-Martins, M.V., Sánchez, G.A., Krettli, A.U., Brener, Z. (1985). Antibody-dependent cell cytotoxicity against Trypanosoma cruzi is only mediated by protective antibodies. Parasite Immunol. 7: 367-376.

Magalhães, L.M., Viana, A., Chiari, E., Galvão, L.M., Gollob, K.J., Dutra W.O. (2015). Differential Activation of Human Monocytes and Lymphocytes by Distinct Strains of Trypanosoma cruzi. PLoS Negl Trop Dis. 9: e0003816. doi:10.1371/journal.pntd.0003816

Magdesian, M.H., Giordano, R., Ulrich, H., Juliano, M.A., Juliano, L., Schumacher, R.I., Colli, W., Alves M.J. (2001). Infection by Trypanosoma cruzi. Identification of a parasite ligand and its host cell receptor. J Biol Chem. 276:19382-19389.

Mahnke, Y.D., Brodie, T.M., Sallusto, F., Roederer, M., Lugli, E. (2013). The who’s who of T-cell differentiation: Human memory T-cell subsets. Eur J Immunol. 43: 2797-2809. doi:10.1002/eji.201343751

Marañón, C., Thomas, M.C., Planelles, L., López, M.C. (2001). The immunization of A2/K(b) transgenic mice with the KMP11-HSP70 fusion protein induces CTL response against human cells expressing the T. cruzi KMP11 antigen: Identification of A2- estricted epitopes. Mol Immunol. 38:279-287.

Mateus, J-, Pérez-Antón, E., Lasso, P., Egui, A., Roa, N., Carrilero, B., González, J.M., Thomas, M.C., Puerta, C.J., López, M.C., Cuéllar, A. (2017). Antiparasitic Treatment Induces an Improved CD8+ T Cell Response in Chronic Chagasic Patients. J Immunol. 198: 3170-3180. doi: 10.4049/jimmunol.1602095

Medeiros, N.I., Fares, R.C., Franco, E.P., Sousa, G.R., Mattos, R.T., Cháves, A.T., Nunes, M.D., Dutra, W.O., Correa-Oliveira, R., Rocha, M.O., Gomes, J.A. (2017). Differential Expression of Matrix Metalloproteinases 2, 9 and Cytokines by Neutrophils and Monocytes in the Clinical Forms of Chagas Disease. PLoS Negl Trop Dis. 11: e0005284. doi: 10.1371/journal.pntd.0005284

Milei, J., Fernández, A., Vanzulli, G., Storino, S., Matturri, R., Rossi, L. (1996). Myocardial inflammatory infiltrate in human chronic chagasic cardiomyopathy: Immunohistochemical findings. Cardiovasc Pathol. 5: 209-219.

Molina, H.A., Kierszenbaum, F. (1987). A study of human myocardial tissue in Chagas’ disease: Distribution and frequency of inflammatory cell types. Int J Parasitol. 17:1297-1305

Morillo, C.A., Marin-Neto, J.A., Avezum, A., Sosa-Estani, S., Rassi, A. Jr., Rosas, F., Villena, E., Quiroz, R., Bonilla, R., Britto, C., Guhl, F., Velázquez, E., Bonilla, L., Meeks, B., Rao-Melacini, P., Pogue, J., Mattos, A., Lazdins, J., Rassi, A., Connolly, S.J., Yusuf, S.; BENEFIT Investigators. (2015). Randomized Trial of Benzinidazole for Chronic Chagas’ Cardiomyopathy. N Engl J Med. 373:1295-306. doi: 10.1056/NEJMoa1507574

Noya, B.A., Díaz-Bello, Z., Colmenares, C., Ruiz-Guevara, R., Mauriello, L., Muñoz-Calderón, A., Noya, O. (2015). Update on oral Chagas disease outbreaks in Venezuela:Epidemiological, clinical and diagnostic approaches. Mem Inst Oswaldo Cruz. 110: 377-386. doi: 10.1590/0074-02760140285

Overgaard, N.H., Jung, J.W., Steptoe, R.J., Wells, J.W. (2015). CD4+/CD8+ double-positive T cells: More than just a developmental stage? J Leukoc Biol. 97: 31-38. doi:10.1189/jlb.1RU0814-382.

Rassi, A., Rezende, J.M., Luquetti, A.O., Rassi, Jr. A. (2010). Clinical Phases and Forms of Chagas Disease. American Trypanosomiasis Chagas Disease. In: One Hundred Years of Research. p. 709-741. Fecha de consulta: ¿?. Disponible en: chttps://doi.org/10.1016/B978-0-12-384876-5.00027-7

Rassi, A. Jr., Marin-Neto, J.A., Rassi. A. (2017). Chronic Chagas cardiomyopathy: A review of the main pathogenic mechanisms and the efficacy of aetiological treatment following the BENznidazole Evaluation for Interrupting Trypanosomiasis (BENEFIT) trial. Mem Inst Oswaldo Cruz. 112: 224-235. doi: 10.1590/0074-02760160334

Rocha-Rodrigues, D.B., dos Reis, M.A., Romano, A., Pereira, S.A., Teixeira, V.P., Tostes S. J.r, Rodrigues, V. Jr. (2012). In situ expression of regulatory cytokines by heart inflammatory cells in Chagas’ disease patients with heart failure. Clin Dev Immunol. 2012: 361730. doi: 10.1155/2012/361730

Rosas, F., Roa, N., Cucunubá, Z., Cuéllar, A., González, J.M., Puerta, C. (2012). Chagasic cardiomyopathy. In: Veselka J. Cardiomyopathies - From Basic Research to Clinical Management. Rijeka, Croatia: Editorial INTECH. p. 775-800.

Rosestolato, C.T., Dutra, J, M., De Souza, W., de Carvalho, T.M. (2002) Participation of host cell actin filaments during interaction of trypomastigote forms of Trypanosoma cruzi with host cells. Cell Struct Funct. 27: 91-98.

Sabino, E.C., Ribeiro, A.L., Salemi, V.M., Di Lorenzo Oliveira, C., Antunes, A.P., Menezes, M.M., Lanni, B.M., Nastari, L., Fernandes, F., Patavino, G.M., Sachdev, V., Capuani, L., de Almeida-Neto, C., Carrick, D.M., Wright. D., Kavounis, K., Gonҫalez, T.T., Carneiro-Proietti, A.B., Custer, B., Busch, M.P., Murphy, E.L. (2013). Ten-year incidence of Chagas cardiomyopathy among asymptomatic Trypanosoma cruzi- eropositive former blood donors. Circulation. 127: 1105-1115. doi: 10.1161/CIRCULATIONAHA.112.123612

Schmitt, N., Ueno. H. (2015). Regulation of human helper T cell subset differentiation by cytokines. Curr Opin Immunol. 34: 130-136. doi: 10.1016/j.coi.2015.03.007

Silverio, J.C., Pereira, I.R., Cipitelli, M.C., Vinagre, N.F., Rodrigues, M.M., Gazzinelli, R.T., Lannes-Vieira, J. (2012). CD8+ T-cells expressing interferon gamma or perforin play antagonistic roles in heart injury in experimental Trypanosoma cruzi-elicited cardiomyopathy. PLoS Pathog. 8: e1002645. doi:10.1371/journal.ppat.1002645

Sousa, G.R., Gomes, J.A., Fares, R.C., Damásio, M.P., Chaves, A.T., Ferreira, K.S., Nunes, M.C., Medeiros, N.I., Valente, V.A., Corrêa-Oliveira, R., Rocha, M.O. (2014). Plasma cytokine expression is associated with cardiac morbidity in Chagas disease. PLoS One. 9: e87082. doi:10.1371/journal.pone.0087082

Sosa-Estani, S., Segura, E.L., Ruiz, A.M., Velázquez, E., Porcel, B.M., Yampotis, C. (1998). Efficacy of chemotherapy with benzinidazole in children in the indeterminate phase of Chagas’ disease. Am J Trop Med Hyg. 59: 526-529.

Talvani, A., Rocha, M.O., Barcelos, L.S., Gomes, Y.M., Ribeiro, A.L., Teixeira, M.M. (2004). Elevated concentrations of CCL2 and tumor necrosis factor-alpha in chagasic cardiomyopathy. Clin Infect Dis. 38: 943-950.

Tarleton, R. (1980). Depletion of CD8+ T cells increases susceptibility and reverses vaccine-induced immunity in mice infected with Trypanosoma cruzi. J Immunol. 144: 717-724.

Tarleton RL. (2015). CD8+ T cells in Trypanosoma cruzi infection. Semin Immunopathol. 37: 233-238. doi: 10.1007/s00281-015-0481-9.

Thomas, M.C., García-Pérez, J.L., Alonso, C., López, M.C. (2000). Molecular characterization of KMP11 from Trypanosoma cruzi: A cytoskeleton-associated protein regulated at the translational level. DNA Cell Biol. 19: 47-57.

Thomas, M.C., Longobardo, M.V., Carmelo, E., Marañón, C., Planelles, L., Patarroyo, M.E., Alonso, C., López, M.C. (2001). Mapping of the antigenic determinants of the T. cruzi kinetoplastid membrane protein-11. Identification of a linear epitope specifically recognized by human Chagasic sera. Clin Exp Immunol. 123: 465-471.

Vargas-Zambrano, J.C., Lasso, P., Cuéllar, A., Puerta, C.J., González, J.M. (2013). A human astrocytoma cell line is highly susceptible to infection with Trypanosoma cruzi. Mem Inst Oswaldo Cruz. 108: 212-219.

Vitelli-Avelar, D.M., Sathler-Avelar, R., Massara, R.L., Borges, J.D., Lage, P.S., Lana, M., Teixeira-Carvalho, A., Dias, J.C., Elói-Santos, S.M., Martins-Filho, O.A. (2006). Are increased frequency of macrophage-like and natural killer (NK) cells, together with high levels of NKT and CD4+CD25high T cells balancing activated CD8+ T cells, the key to control Chagas’ disease morbidity. Clin Exp Immunol. 145: 81-92.

Wherry, E.J., Kurachi, M. (2015). Molecular and cellular insights into T cell exhaustion. Nat Rev Immunol. 15: 486-499. doi: 10.1038/nri3862

Wirth, J.J., Kierszenbaum, F. (1987). Inhibition of mammalian host cell infection by insect-derived, metacyclic forms of Trypanosoma cruzi in the presence of human or rabbit anti-T. cruzi antibodies. Int. J. Parasitol. 17: 841-845.

Declaration of originality and transfer author's rights

The authors declare:

  1. The published data and reference materials have been duly identified with their respective credits and have been included in the bibliographic notes and citations that have been so identified and that should it be required, I have all releases and permissions from any copyrighted material. 
  2. All material presented is free from any copyright and that I accept full legal responsibility for any legal claims relating to copyrighted intellectual property, fully exonerating from responsibility the Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales.
  3. This work is unpublished and will not be sent to any other journal while waiting for the editorial decision of this journal. I declare that there is no conflict of interest in this manuscript.
  4. In case of publication of this article, all author´s rights are transferred to the Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, and so cannot be reproduced in any form without the express permission of it.
  5. By means of this document, if the article is accepted for publication by the Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, the Revista assumes the right to edit and publish the articles in national and international indices or data bases for academic and scientific use in paper, electronic, CD-ROM, internet form either of the complete text or any other known form known or to be known and non-commercial, respecting the rights of the authors.

Transfer of author rights

In case the article is approved for publication, the main author in representation of himself and his co-authors or the main author and his co-authors must cede the author rights of the corresponding article to the Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, except in the following cases:

The authors and co-authors will retain the right to revise, adapt, prepare derived works, oral presentations, and distribution to some colleagues of reprints of their own published work, if the corresponding credit is given to the Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales. It is also permissible to publish the title of the work, summary, tables, and figures of the work in the corresponding web sites of the authors or their employers, also giving credit to the Revista.

If the work has been realized under contract, the author’s employer has the right to revise, adapt, prepare derivative works, reproduce, or distribute in hard copy the published work, in a secure manner and for the exclusive use of his employees.

If the Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales were approached for permission by a third party for using, printing, or publishing specifically articles already published, the Revista must obtain the express permission of the author and co-authors of the work or of the employer except for use in classrooms, libraries, or reprinted in a collective work. The Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales reserves the possible use in its front cover of figures submitted with the manuscripts.

No other right, other than the author’s right, can be claimed by the Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales.