Abstract
Regular and chaotic test particle motion in axially symmetric gravitational fields due to bodies with quadrupolar and octupolar deformation are studied using Poincare surfaces of section. We find that inclusion of the octupolar term induces a distortion in the KAM curves corresponding to regular trajectories, as well as an increasing in chaoticity. The fact that by switching on the octupolar moment increases the chaoticity and leads to apparition of spindle torus, can be viewed even in the case corresponding to oblate deformation, which commonly presents regular motion. Thus, the results here obtained are the generalization, for the case of Newtonian gravity, of those previously obtained by Heiss, W. D., Nazmitdinov R. G. & Radu, S. (1994) and Li, J. (1998) for harmonic oscillators.
References
Arfken, G. and Weber, H. (2005). Mathematical Methods for Physicists. 6th ed. Academic Press.
Aquilano, R. O., Muzzio, J. C., Navone, H. D. & Zorzi A. F.. (2007). Orbital structure of self-consistent triaxial stellar systems. Celestial Mech. Dynam. Astronom. 99, 307.
Binney, J. and Tremaine, S. (2008). Galactic Dynamics. 2nd ed. Princeton University Press.
Boccaletti, D. & Pucacco, G. (2004). Theory of Orbits, Volume 1, Springer. Third edition.
Capuzzo-Dolcetta, R., Leccese, L., Merritt, D. & Vicari, A. (2007). Self-consistent models of cuspy triaxial galaxies with dark matter halos. Ap. J. 666, 165.
Cooray A. R. (2000). Galaxy clusters: oblate or prolate? Mon. Not. R. Astron. Soc. 313, 783.
Contopoulos, G., Voglis, N. & Kalapotharakos, C. (2002). Order and Chaos in Self-Consistent Galactic Models. Celestial Mech. Dynam. Astronom. 83, 191.
Davies, R. L. & Birkinshaw M. (2010). NGC 4261 - A prolate elliptical galaxy. Ap. J. 303, L45.
Fasano, G. & Vio, R. (1991). Apparent and true flattening distribution of elliptical galaxies. Mon. Not. R. Astron. Soc., 249, 629.
Fernandez, A. (2005). Dinámica Clásica. 2da edición. Fondo de Cultura Económica USA.
Frauendorf, S. & Pashkevich, V. V. (1993). Shapes of Na Clusters Z. Phys D 26, 98.
Griffiths, D. (1999). Introduction to Electrodynamics. Third edition. Prentice Hall, New Jersey.
Guéron, E. & Letelier, P.S. (2001). Chaos in pseudo- New- tonian black holes with halos. A& A 368, 716.
Guéron, E. & Letelier, P.S. (2002). Geodesic chaos around quadrupolar deformed centers of attraction. Phys. Rev. E 66, 046611.
Hamamoto, I., Mottelson, B., Xie, H. & Zhang, X. Z. (1991). Shell-structure and octupole instability in fermion systems. Z.Phys. D 21, 163.
Heiss, W. D., Nazmitdinov R. G. & Radu, S. (1994). Chaos in axially symmetric potentials with octupole deformation. Phys. Rev. Lett. 72, 2351.
Helmi, A. (2004). Is the dark halo of our Galaxy spherical. Mon. Not. R. Astron. Soc. 351 (2), 643.
Irwin, J. & Shmakova, M. (2003). Observations of cluster substructure using weakly lensed sextupole moments. Published online at www.arXiv.org, archived as arXiv:astroph/0308007v1.
Jackson, J. D. (1998). Classical Electrodynamics. Third Edition. Wiley Editorial.
Jalali, M. A. & Sobouti, Y. (1998). Some Analytical Results in Dynamics of Spheroidal Galaxies. Celestial Mech. Dynam. Astronom. 70, 255.
Jeon, M., Kim, S. S. & Ann, H. B. (2009). Galactic Warps in Triaxial Halos. Ap. J. 696, 1899.
Ju-Hua, C. & Yong-Jiu, W. (2003). Chaos in a gravitational field with dipoles. Chin. Phys. Soc. 12-8, 836.
Kimm, T. & Yi, S. K. (2007). Intrinsic axis ratio distribution of early-type galaxies from the sloan digital sky survey. Ap. J. 670, 1048.
Letelier P.S., Ramos-Caro J. & L´opez-Suspes F. (2011). Chaotic motion in axially symmetric potentials with oblate quadrupole deformation. Phys. Lett. A 375, 3655-3658.
Li, J. (1998). The stability of trajectories in an axially symmetric potential with octupole deformation. Phys. G: Nucl. Part. Phys. 24, 1021.
López-Suspes, F. & González, G. A. (2013). Thick Disks with newtonian multipolar moments. Rev. Acad. Colomb. Cienc. Ex. Fis. Nat. 37 (144), 301.
Moura, A. & Letelier, P. S. (2000). Chaos and fractals in geodesic motions around a nonrotating black hole with halos. Phys. Rev. E 61, 6506.
Pucacco, G. (2009). Resonances and bifurcations in axisym metric scale-free potentials. Mon. Not. R. Astron. Soc., 399, 340.
Ryden, B. S. (1996). The Intrinsic Shapes of Stellar Systems. Ap. J. 461, 146.
Saa, A. & Venegeroles, R. (1999). Chaos around the superposition of a black-hole and a thin disk. Phys. Lett. A 259, 201.
Saa, A. (2000). Chaos around the superposition of a monopole and a thick disk. Phys. Lett. A 269, 204.
Schwarzschild, M. (1979). A numerical model for a triaxial stellar system in dynamical equilibrium. Ap. J. 232, 236.
Sereno, M., De Filippis, E., Longo, G. & Bautz, M.W. (2006). Measuring the three-dimensional structure of galaxyclusters. II. Are clusters of galaxies oblate or prolate Ap. J. 645, 170.
Valluri, M., Debattista, V.P., Quinn, T. & Moore, B. (2010). The orbital evolution induced by baryonic condensation in triaxial haloes. Mon. Not. R. Astron. Soc., 403,525.
Zhenglu, J. (2009). Dynamical modelling of the elliptical galaxy NGC 2974. Celestial Mech. Dynam. Astronom. 103, 31.
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright (c) 2017 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales