Properties of the HPHT diamond when used as a soft X-Ray detector
PDF

How to Cite

Meléndrez-Amavizca, R., Díaz-Lagos, M., & Martínez-Ovalle, S. A. (2017). Properties of the HPHT diamond when used as a soft X-Ray detector. Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 41(159), 168–173. https://doi.org/10.18257/raccefyn.457

Downloads

Download data is not yet available.

Métricas Alternativas


Dimensions

Abstract

The diamond has extraordinary physical and chemical properties. This material by having a Zeff (atomic number-cash) equivalent to the human tissue is converted into a material suitable for use as a dosimeter of radiation. In this work, the properties of response to Afterglow (AG), Thermoluminescence (TL) and Optically Stimulated Luminescence (OSL) in HPHT diamond type lb (high temperature and high pressure diamond) are studied when subjected to lightning X (0.75 mA, 35 kV). The properties dosimetric curve and the TL were obtained on a computer Riso TL/OSL, where studies of fading (fading thermoluminescent), show that after a time of 1 hour, it stabilizes the signal TL and the reproducibility presents an error signal is not greater 5%. It is linearity in the three techniques for absorbed dose between 0-2 Gy. Between 2-9 Gy can be considered a response supralineal for the three techniques used and obtained a saturation of the sample to the absorbed doses increased to 9 Gy. It is showed that this material presents a promising future as a dosimeter in clinical radiation beams soft, used especially for radiation dosimetry for clinical use. © 2017. Acad. Colomb. Cienc. Ex. Fis. Nat.

https://doi.org/10.18257/raccefyn.457
PDF

References

Taylor, M. L., Kron, T., Franich, R. D. (2011). A contemporary review of stereotactic radiotherapy: Inherent dosimetric complexities and the potential for detriment. Acta Oncologica. 50 (4): 483-508.

Spasic, E., Magne, S., Aubineau-Lanièce, I., De Carlan, L., Malet, C., Ginestet, C., Ferdinand, P. (2011, June). Intracavitary in vivo dosimetry based on multichannel fiber-coupled Radioluminescence and Optically Stimulated Luminescence of Al 2 O 3: C. In Advancements in Nuclear Instrumentation Measurement Methods and their Applications (ANIMMA), 2011 2nd International Conference on (pp. 1-6). IEEE.

Morin, J., Béliveau-Nadeau, D., Chung, E., Seuntjens, J., Thériault, D., Archambault, L., Beaulieu, L. (2013). A comparative study of small field total scatter factors and dose profiles using plastic scintillation detectors and other stereotactic dosimeters: the case of the CyberKnife. Medical Physics, 40 (1).

Santiago, M., Marcazzó, J., Grasselli, C., Lavat, A., Molina, P., Spano, F., Caselli, E. (2011). Thermo-and radioluminescence of undoped and Dy-doped strontium borates prepared by solgel method. Radiation Measurements. 46 (12): 1488-1491.

Molina, P., Santiago, M., Marcazzó, J., Spano, F., Henniger, J., Cravero, W., Caselli, E. (2012). Radioluminescence of red-emitting Eu-doped phosphors for fiberoptic dosimetry. Applied Radiation and Isotopes. 71: 12-14.

Guarneros-Aguilar, C., Cruz-Zaragoza, E., Marcazzó, J., Palomino-Merino, R., Espinosa, J. E. (2013, July). Synthesis and TL characterization of Li 2 B 4 O 7 doped with copper and manganese. In C. Vázquez-López, G. Espinosa-García, & J. I. Golzarri (Eds.), AIP Conference Proceedings (Vol. 1544, No. 1, pp. 70-77). AIP.

Marcazzó, J., Camargo, L., Khaidukov, N. M., Santiago, M. (2015). Study of optically stimulated luminescence of Tb 3+/Sm 3+ doubly doped K 2 YF 5 single crystals. Journal of Luminescence. 164: 112-115.

Low, D. A., Moran, J. M., Dempsey, J. F., Dong, L., Oldham, M. (2011). Dosimetry tools and techniques for IMRT. Medical Physics. 38 (3): 1313-1338.

Melendrez, R., Schreck, M., Chernov, V., Preciado-Flores, S., Pedroza-Montero, M., Barboza-Flores, M. (2006).

Afterglow, TL and IRSL in beta-irradiated HPHT type Ib synthetic diamond. Physica Status Solidi (a). 203 (12): 3167-3172.

Chernov, V., Meléndrez, R., Gastélum, S., Pedroza-Montero, M., Piters, T., Preciado-Flores, S., Barboza-Flores, M. (2013). Afterglow and thermoluminescence properties in HPHT diamond crystals under beta irradiation. Physica Status Solidi (a). 210 (10): 2088-2094.

Gil-Tolano, M. I., Meléndrez, R., Lancheros-Olmos, J. C., Castaneda, B., Soto-Puebla, D., Chernov, V., Pedroza- Montero, M., Barboza-Flores, M. (2014). AG, TL, and IRSL dosimetric properties in X-ray irradiated HPHT diamond crystals. Physica Status Solidi (a). 211 (10): 2359-2362.

Gil-Tolano, M. I., Meléndrez, R., Lancheros-Olmos, J. C., Castaneda, B., Soto-Puebla, D., Chernov, V., Pedroza- Montero, M., Barboza-Flores, M. (2015). Thermoluminescence studies on HPHT diamond crystals exposed to β-irradiation. Physica Status Solidi (a). 212 (11): 2507-2511.

Chen, R., Kirsh, Y. (2013). The analysis of thermally stimulated processes. Elsevier. Furetta, C. (2010). Handbook of thermoluminescence. World Scientific.

McKeever, S. W. (1988). Thermoluminescence of solids (Vol. 3). Cambridge University Press. Oberhofer, M., Scharmann, A. (Eds.). (1993). Techniques and management of personnel thermoluminescence dosimetry services (Vol. 2). Springer Science & Business Media.

Yukihara, E. G., McKeever, S. W. (2011). Optically stimulated luminescence: fundamentals and applications. John Wiley & Sons. Bos, A. J. J. (2006). Theory of thermoluminescence. Radiation Measurements, 41: S45-S56.

Bøtter-Jensen, L. (2008). Guide to Riso the Riso TL/OSL Reader. Riso National Laboratory, Denmark.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2017 Journal of the Colombian Academy of Exact, Physical and Natural Sciences