Effect of oxygen and methane on the oxidation kinetics of coal char
PDF (Español (España))

How to Cite

Laverde - Múnera, J., Alvarado -Torres, P. N., & Ruiz - Machado, W. (2017). Effect of oxygen and methane on the oxidation kinetics of coal char. Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 41(159), 221–229. https://doi.org/10.18257/raccefyn.452

Downloads

Download data is not yet available.

Métricas Alternativas


Dimensions

Abstract

In this work we evaluated the effect of adding methane during the oxidation process of a coal char with low oxygen concentration. We analyzed the effect from a kinetic point of view and we determined the activation energy (Ea) and the pre-exponential factor (A) with different oxygen concentrations and oxygen and methane mixtures. We used a coal char from a highly volatile bituminous coal with particle size of 75 to 150 μm; the kinetic parameters were determined by thermogravimetric method (TGA) with the high-velocity model; oxygen concentration variations were studied with 5, 8 and 21% of oxygen, as well as the effect of adding methane (5,10 and 14%) when oxidation occurred with 5% of oxygen. The results showed that the Ea decreased when oxygen concentration increased, and that adding 5% of methane to the total mixture enhanced the effect. Instead, when we increased the methane percentage, the Ea increased due to the rapid reaction of oxygen and methane in the homogeneous phase as compared with the heterogenous reaction of oxygen and coal char. With 5% oxygen the Ea value was 122.9 kJ/mol and with 21%, it was 90.69 kJ/mol; when methane was added at 5%, the Ea value was 110.7 kJ/mol, and it increased to 170.8 kJ/mol when there was 14% of methane in the mixture. © 2017. Acad. Colomb. Cienc. Ex. Fis. Nat.
https://doi.org/10.18257/raccefyn.452
PDF (Español (España))

References

Acelas, N., Ruiz, W., López, D. (2010). Determinación de los parámetros cinéticos en la pirólisis del pino Ciprés. Quim. Nova, 33 (7): 1500-1505.

Alvarado, P., Cadavid, F., Mondragón, F., Ruiz, W., & Amell, A. (2009). Estudio cinético químico de la formación de óxidos de nitrógeno en la combustión sin llama del metano. Energética, 41: 13-22.

Alviso, D., Rolon, J. C., Scouflaire, P., & Darabiha, N. (2015). Experimental and numerical studies of biodiesel combustion mechanisms using a laminar counterflow spray premixed flame. Fuel, 153: 154-165. http://doi.org/10.1016/j.fuel.2015.02.079

American Society of Testing and Materials. (1998). ASTM D338: Standard Classifiation of Coals by Rank (Vol. 552).

Bilgen, S. (2014). Structure and environmental impact of global energy consumption. Renewable and Sustainable Energy Reviews, 38: 890-902. http://doi.org/10.1016/j.rser.2014.07.004

Cavaliere, A., & De Joannon, M. (2004). Mild combustion. Mild Combustion (Vol. 30). Progress in Energy and Combustion Science. http://doi.org/10.1016/j.pecs.2004.02.003

Friedl, A., Padouvas, E., Rotter, H., & Varmuza, K. (2005). Prediction of heating values of biomass fuel from elemental composition. Analytica Chimica Acta, 544 (1-2 SPEC. ISS.): 191-198. http://doi.org/10.1016/j.aca.2005.01.041

Gil, M. V., Casal, D., Pevida, C., Pis, J. J., & Rubiera, F. (2010). Thermal behaviour and kinetics of coal/biomass blends during co-combustion. Bioresource Technology, 101 (14): 5601-5608. http://doi.org/10.1016/j.biortech.2010.02.008

Izquierdo, J. F., & Torres, J. F. I. (2004). Cinética de las reacciones químicas. Cinética de las reacciones químicas. Barcelona: Universitat de Barcelona.

Jones, J. C., Chiz, P. S., Koh, R., & Matthew, J. (1996). Kinetic parameters of oxidation of bituminous coals from heatrelease rate measurements. Fuel, 75 (15): 1755-1757. http://doi.org/10.1016/S0016-2361(96)00159-7

Krerkkaiwan, S., Fushimi, C., Tsutsumi, A., & Kuchonthara, P. (2013). Synergetic effect during co-pyrolysis/gasification of biomass and sub-bituminous coal. Fuel Processing Technology, 115: 11-18. http://doi.org/10.1016/j.fuproc.2013.03.044

Li, J., Yang, W., Blasiak, W., & Ponzio, A. (2012). Volumetric combustion of biomass for CO 2 and NOx reduction in coalfired boilers. Fuel, 102: 624-633. http://doi.org/10.1016/j.

fuel.2012.06.083

Li, S., & Yue, C. (2003). Study of different kinetic models for oil shale pyrolysis, 85: 51-61. http://doi.org/10.1016/S0378-3820(03)00097-3

Liotta, R., Brons, G., Isaacs, J. (1983). Oxidative weathering of Illinois No. 6 coal, 62 (6): 781-791. http://doi.org/doi.org 10.1016/0016-2361(83)90028-5

Masel, R. I. (1996). Principles of adsorption and reaction on solid surfaces, 804.

Medwell, P. R., & Chinnici, A. (2017). Effect of particle size on the MILD combustion characteristics of pulverised brown coal. Fuel Processing Technology, 155 (November 2016): 74-87. http://doi.org/10.1016/j.fuproc.2016.04.003

Park, D. K., Kim, S. D., Lee, S. H., & Lee, J. G. (2010). Copyrolysis characteristics of sawdust and coal blend in TGA and a fixed bed reactor. Bioresource Technology, 101 (15):6151-6156. http://doi.org/10.1016/j.biortech.2010.02.087

Perrin, N., Dubettier, R., Lockwood, F., Tranier, J.-P., Bourhy- Weber, C., & Terrien, P. (2014). Oxycombustion for coal power plants: Advantages, solutions and projects. Applied Thermal Engineering, 74: 75-82. http://doi.org/10.1016/j.

applthermaleng.2014.03.074

Quan, C., Xu, S., An, Y., & Liu, X. (2014). Co-pyrolysis of biomass and coal blend by TG and in a free fall reactor. Journal of Thermal Analysis and Calorimetry, 117 (2): 817-823. http://doi.org/10.1007/s10973-014-3774-7

Saha, M., Chinnici, A., Dally, B. B., & Medwell, P. R. (2015). Numerical Study of Pulverized Coal MILD Combustion in a Self Recuperative Furnace. http://doi.org/10.1021/acs.energyfuels.5b01644

Shen, J., Liu, J., Ma, J., Zhang, H., & Jiang, X. (2015). Parametric study of reburning of nitrogen oxide for superfine pulverized coal. Energy Conversion and Management, 89 (x):825-

http://doi.org/10.1016/j.enconman.2014.10.059

Shi, L., Liu, Q., Guo, X., He, W., & Liu, Z. (2014). Pyrolysis of coal in TGA: Extent of volatile condensation in crucible. Fuel Processing Technology, 121: 91-95. http://doi.org/10.1016/j.fuproc.2014.01.013

Tjatjopoulos, G. J., & Vasalos, I. a. (1992). Reaction-path analysis of a homogeneous methane oxidative coupling mechanism. Applied Catalysis A: General, 88 (2): 213-230. http://doi.org/10.1016/0926-860X(92)80216-Y

Torres Alvarado, P. N. (2014). Combustión de material carbonoso en condiciones de alta temperatura y baja concentración de oxígeno. Universidad de Antioquia (Tesis doctoral).

Wang, G., Zhang, J., Shao, J., Sun, H., & Zuo, H. (2014). Thermogravimetric Analysis of Coal Char Combustion Kinetics. Journal of Iron and Steel Research, International, 21 (10): 897-904. http://doi.org/10.1016/S1006-706X(14)60159-X

Warnatz, J., Maas, U., & Dibble, R. W. (2006). J. Warnatz · U. Maas · R.W. Dibble Combustion. New York.

Weber, R., Smart, J. P., & Vd Kamp, W. (2005). On the (MILD) combustion of gaseous, liquid, and solid fuels in high temperature preheated air. Proceedings of the Combustion Institute, 30 II(2): 2623-2629. http://doi.org/10.1016/j.proci.2004.08.101

Westbrook, C. K., & Dryer, F. L. (1981). Simplified Reaction Mechanisms for the Oxidation of Hydrocarbon Fuels in Flames. Combustion Science and Technology, 27 (1-2): 31-43. http://doi.org/10.1080/00102208108946970

Yuan, S., Dai, Z. H., Zhou, Z. J., Chen, X. L., Yu, G. S., & Wang, F. C. (2012). Rapid co-pyrolysis of rice straw and a bituminous coal in a high-frequency furnace and gasification of the residual char. Bioresource Technology, 109: 188-197. http://doi.org/10.1016/j.biortech.2012.01.019

Declaration of originality and transfer author's rights

The authors declare:

  1. The published data and reference materials have been duly identified with their respective credits and have been included in the bibliographic notes and citations that have been so identified and that should it be required, I have all releases and permissions from any copyrighted material. 
  2. All material presented is free from any copyright and that I accept full legal responsibility for any legal claims relating to copyrighted intellectual property, fully exonerating from responsibility the Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales.
  3. This work is unpublished and will not be sent to any other journal while waiting for the editorial decision of this journal. I declare that there is no conflict of interest in this manuscript.
  4. In case of publication of this article, all author´s rights are transferred to the Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, and so cannot be reproduced in any form without the express permission of it.
  5. By means of this document, if the article is accepted for publication by the Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, the Revista assumes the right to edit and publish the articles in national and international indices or data bases for academic and scientific use in paper, electronic, CD-ROM, internet form either of the complete text or any other known form known or to be known and non-commercial, respecting the rights of the authors.

Transfer of author rights

In case the article is approved for publication, the main author in representation of himself and his co-authors or the main author and his co-authors must cede the author rights of the corresponding article to the Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, except in the following cases:

The authors and co-authors will retain the right to revise, adapt, prepare derived works, oral presentations, and distribution to some colleagues of reprints of their own published work, if the corresponding credit is given to the Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales. It is also permissible to publish the title of the work, summary, tables, and figures of the work in the corresponding web sites of the authors or their employers, also giving credit to the Revista.

If the work has been realized under contract, the author’s employer has the right to revise, adapt, prepare derivative works, reproduce, or distribute in hard copy the published work, in a secure manner and for the exclusive use of his employees.

If the Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales were approached for permission by a third party for using, printing, or publishing specifically articles already published, the Revista must obtain the express permission of the author and co-authors of the work or of the employer except for use in classrooms, libraries, or reprinted in a collective work. The Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales reserves the possible use in its front cover of figures submitted with the manuscripts.

No other right, other than the author’s right, can be claimed by the Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales.