Abstract
In this study we synthesized the YBa2Cu3O7-δ superconductor using the unconventional method of plasma sintering in the range of abnormal glow discharge (AGD). The samples were treated with different sintering temperatures and times. As reference we used a superconductor sample obtained by using the conventional method (resistive furnace). The structural characterization of these samples was performed by X-ray diffraction measurements and Rietveld refinements. Superconductivity behavior was determined by analyzing magnetization curves as a function of the temperature according to zero field cooling (ZFC) and field cooling (FC) experimental procedures. The samples sintered by AGD presented structural characteristics (orthorhombic Pmmm) and superconductivity with a critical temperature of Tc ~ 92 K, which were similar to those obtained by the conventional method, but with a significant reduction of temperature and time under proper pressure environment during the sintering process. © 2017. Acad. Colomb. Cienc. Ex. Fis. Nat.References
Badica, P., Crisan, A., Aldica, G., Endo, K., Borodianska, H., Togano, K., Awaji, S., Watanabe, K., Sakka, Y., & Vasylkiv, O. (2011). ‘Beautiful’ unconventional synthesis and processing technologies of superconductors and some other materials. Science And Technology Of Advanced Materials. 12 013001 (13pp).
Baquero, R. (2014). La Superconductividad: sus orígenes, sus teorías, sus problemas candentes hoy. Revista de la Academia Colombiana de Ciencias Exactas Físicas y Naturales. 38 (supl.): 18-33.
Beno M. A., Beno, M. A., Soderholm, L., Capone II, D. W., Hinks, D. G., Jorgensen, J. D., Grace, J. D., Schuller, I.K., Segre, C. U,. & Zhang K. (1987). Structure of the single-phase high-temperature superconductor YBa2Cu3O7−δ. Applied Physics Letters. 51 (1): 57-59.
Brunatto, S.F., Kühn, I., Klein, A.N., & Muzart, J.L.R. (2003). Sintering iron using a hollow cathode discharge. Materials Science and Engineering: A. 343: 163-169.
Buschow K. H. J. y de Boer F.R. (2004). Physics of Magnetism and Magnetic Materials. (Kluwer Academic/Plenum Publisher). Chapter 9. Measurement Techniques. pp 85-89.
Chiang, Y., Dunbar, P., & Kingey, W. D. (1997). Physical Ceramics, (John Wiley & Sons). Chapter 1. Structure of Ceramics 1. pp 59-65.
Cyrot, M., & Pavuna, D. (1992). Introduction to Superconductivity and High-Tc Materials, (World Scientific Publishing Co. Pvt. Ltd.). Estados Unidos.
Eremin, N.N., Leonyuk, L.I., & Urusov, V.S. (2001). Interatomic potentials for structure simulation of alkaline-earth cuprates. Journal of Solid State Chemistry. 158: 162-168.
Foner S. (1959). Versatile and Sensitive Vibrating-Sample Magnetometer. The review of scientific instruments. 30 (7): 548-557.
German, R.M. (1996). Sintering theory and practice. (John Wiley & Sons, Inc., N.Y.).
Kovalev, & Ket. (2002). High output power reluctance electric motors with bulk high-temperature superconductor elements. Superconductor Science and Technology. 15: 817- 822.
Larson, A.C., & Von Dreele, R.B. (2000). General structure analysis system (GSAS). Los Alamos National Laboratory Report LAUR. 86-748.
Lourenço, J.M., Maliska, A.M., Klein, A.N., & Muzart, J.L.R. (2004). Plasma Sintering of Unalloyed Iron: A Study of Surface Porosity. Materials Research. 7 (2): 269-275.
Pathakand, L.C., & Mishra, S.K. (2005). A review on the synthesis of Y–Ba–Cu-oxide powder. Superconductor Science and Technology. 18: R67-R89.
Pavanati, H.C., Maliska, A.M., Klein, A.N., & Muzart, J.L.R. (2005). Sintering unalloyed iron in abnormal glow discharge with superficial chromium enrichment. Materials Science and Engineering; A. 392: 313-319.
Roth, G., Renker, B., Heger, G., Hervieu, M., Domenges, B., Raveau, B. (1987). On the structure of non-superconducting YBa2Cu3O6+ε. Zeitschrift fuer Physik, B (1984). 69: 53-59.
Sarmiento Santos, A., Fuentes Guerrero, U., Roa Rojas, J., Martínez Buitrago, D., Vera López, E., & Parra Vargas, C.A. (2011). Plasma Sintering of the YBa2Cu3O7-δ Superconductor. Journal Chem. Chem. Eng, 5: 1122.
Smith, W.F. (1998). Fundamentos de la ciencia e ingeniería de materiales. Mc. Graw Hill (3rd. ed).
Toby, B.H. (2001). EXPGUI, a graphical user interface for GSAS. Journal Appl. Crystallogr. 34: 210.
Tomita, M., Murakami, M., Nariki S., & Sawa, K. (2002). Mechanical persistent current switch made of resinimpregnated bulk superconductors. Superconductor Science and Technology. 15: 846-849.
Williams, A., Kwei, G.H., Von Dreele, R.B.A., Larson, C.I., Raistrick, D., & Bish, D.L. (1988). Joint X-ray and neutron refinement of the structure of superconducting YBa2Cu3O7-x: precision structure, anisotropic thermal parameters, strain and cation disorder. Physical Review, (Serie 3. B-Condensed Matter). 37 (13): 7960-7962.
Young, R.A. (1993). The Rietveld Method. Oxford University Press.
Zhang, Y., Postrekhin, Y., Ma, K.B., & Chu W.K. (2002). Reaction wheel with HTS bearings for mini-satellite attitude control Superconductor Science and Technology. 15: 823-825.
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright (c) 2017 Journal of the Colombian Academy of Exact, Physical and Natural Sciences