Synthesis of the YBa2Cu3O7-δ superconductor through abnormal glow discharge sintering
PDF (Español (España))

Supplementary Files

Figura 1S (Español (España))
Figura 2S (Español (España))

How to Cite

Soto-Gómez, E. Y., Sarmiento-Santos, A., & Parra-Vargas, C. A. (2017). Synthesis of the YBa2Cu3O7-δ superconductor through abnormal glow discharge sintering. Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 41(158), 36–40. https://doi.org/10.18257/raccefyn.428

Downloads

Download data is not yet available.

Métricas Alternativas


Dimensions

Abstract

In this study we synthesized the YBa2Cu3O7-δ superconductor using the unconventional method of plasma sintering in the range of abnormal glow discharge (AGD). The samples were treated with different sintering temperatures and times. As reference we used a superconductor sample obtained by using the conventional method (resistive furnace). The structural characterization of these samples was performed by X-ray diffraction measurements and Rietveld refinements. Superconductivity behavior was determined by analyzing magnetization curves as a function of the temperature according to zero field cooling (ZFC) and field cooling (FC) experimental procedures. The samples sintered by AGD presented structural characteristics (orthorhombic Pmmm) and superconductivity with a critical temperature of Tc ~ 92 K, which were similar to those obtained by the conventional method, but with a significant reduction of temperature and time under proper pressure environment during the sintering process. © 2017. Acad. Colomb. Cienc. Ex. Fis. Nat.
https://doi.org/10.18257/raccefyn.428
PDF (Español (España))

References

Badica, P., Crisan, A., Aldica, G., Endo, K., Borodianska, H., Togano, K., Awaji, S., Watanabe, K., Sakka, Y., & Vasylkiv, O. (2011). ‘Beautiful’ unconventional synthesis and processing technologies of superconductors and some other materials. Science And Technology Of Advanced Materials. 12 013001 (13pp).

Baquero, R. (2014). La Superconductividad: sus orígenes, sus teorías, sus problemas candentes hoy. Revista de la Academia Colombiana de Ciencias Exactas Físicas y Naturales. 38 (supl.): 18-33.

Beno M. A., Beno, M. A., Soderholm, L., Capone II, D. W., Hinks, D. G., Jorgensen, J. D., Grace, J. D., Schuller, I.K., Segre, C. U,. & Zhang K. (1987). Structure of the single-phase high-temperature superconductor YBa2Cu3O7−δ. Applied Physics Letters. 51 (1): 57-59.

Brunatto, S.F., Kühn, I., Klein, A.N., & Muzart, J.L.R. (2003). Sintering iron using a hollow cathode discharge. Materials Science and Engineering: A. 343: 163-169.

Buschow K. H. J. y de Boer F.R. (2004). Physics of Magnetism and Magnetic Materials. (Kluwer Academic/Plenum Publisher). Chapter 9. Measurement Techniques. pp 85-89.

Chiang, Y., Dunbar, P., & Kingey, W. D. (1997). Physical Ceramics, (John Wiley & Sons). Chapter 1. Structure of Ceramics 1. pp 59-65.

Cyrot, M., & Pavuna, D. (1992). Introduction to Superconductivity and High-Tc Materials, (World Scientific Publishing Co. Pvt. Ltd.). Estados Unidos.

Eremin, N.N., Leonyuk, L.I., & Urusov, V.S. (2001). Interatomic potentials for structure simulation of alkaline-earth cuprates. Journal of Solid State Chemistry. 158: 162-168.

Foner S. (1959). Versatile and Sensitive Vibrating-Sample Magnetometer. The review of scientific instruments. 30 (7): 548-557.

German, R.M. (1996). Sintering theory and practice. (John Wiley & Sons, Inc., N.Y.).

Kovalev, & Ket. (2002). High output power reluctance electric motors with bulk high-temperature superconductor elements. Superconductor Science and Technology. 15: 817- 822.

Larson, A.C., & Von Dreele, R.B. (2000). General structure analysis system (GSAS). Los Alamos National Laboratory Report LAUR. 86-748.

Lourenço, J.M., Maliska, A.M., Klein, A.N., & Muzart, J.L.R. (2004). Plasma Sintering of Unalloyed Iron: A Study of Surface Porosity. Materials Research. 7 (2): 269-275.

Pathakand, L.C., & Mishra, S.K. (2005). A review on the synthesis of Y–Ba–Cu-oxide powder. Superconductor Science and Technology. 18: R67-R89.

Pavanati, H.C., Maliska, A.M., Klein, A.N., & Muzart, J.L.R. (2005). Sintering unalloyed iron in abnormal glow discharge with superficial chromium enrichment. Materials Science and Engineering; A. 392: 313-319.

Roth, G., Renker, B., Heger, G., Hervieu, M., Domenges, B., Raveau, B. (1987). On the structure of non-superconducting YBa2Cu3O6+ε. Zeitschrift fuer Physik, B (1984). 69: 53-59.

Sarmiento Santos, A., Fuentes Guerrero, U., Roa Rojas, J., Martínez Buitrago, D., Vera López, E., & Parra Vargas, C.A. (2011). Plasma Sintering of the YBa2Cu3O7-δ Superconductor. Journal Chem. Chem. Eng, 5: 1122.

Smith, W.F. (1998). Fundamentos de la ciencia e ingeniería de materiales. Mc. Graw Hill (3rd. ed).

Toby, B.H. (2001). EXPGUI, a graphical user interface for GSAS. Journal Appl. Crystallogr. 34: 210.

Tomita, M., Murakami, M., Nariki S., & Sawa, K. (2002). Mechanical persistent current switch made of resinimpregnated bulk superconductors. Superconductor Science and Technology. 15: 846-849.

Williams, A., Kwei, G.H., Von Dreele, R.B.A., Larson, C.I., Raistrick, D., & Bish, D.L. (1988). Joint X-ray and neutron refinement of the structure of superconducting YBa2Cu3O7-x: precision structure, anisotropic thermal parameters, strain and cation disorder. Physical Review, (Serie 3. B-Condensed Matter). 37 (13): 7960-7962.

Young, R.A. (1993). The Rietveld Method. Oxford University Press.

Zhang, Y., Postrekhin, Y., Ma, K.B., & Chu W.K. (2002). Reaction wheel with HTS bearings for mini-satellite attitude control Superconductor Science and Technology. 15: 823-825.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2017 Journal of the Colombian Academy of Exact, Physical and Natural Sciences