Production and structural, electrical and magnetic characterization of a composite material based on powdered magnetite and high density polyethylene
PDF

Supplementary Files

Figure 1S. %Wt magnetite and hematite phases variation according to the volume ratio in the composite
Figure 2S - SEM images of powdered magnetite: a) 1500x b) 3200x c) 5000x
Figure 3S. Magnetic moment as a function of the temperature for each sample
Figure 4S. Samples maximum magnetic moments as function of the temperature
Figure 5S. Samples magnetization curves as a function of the temperature
Figure 6S. Susceptibility as a function of the temperature for each sample
Figure 7S. Samples maximum susceptibility as a function of the temperature.

How to Cite

Garzón, A. O., Landínez, D. A., Roa-Rojas, J., Fajardo-Tolosa, F. E., Peña-Rodríguez, G., & Parra-Vargas, C. A. (2017). Production and structural, electrical and magnetic characterization of a composite material based on powdered magnetite and high density polyethylene. Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 41(159), 154–167. https://doi.org/10.18257/raccefyn.422

Downloads

Download data is not yet available.

Métricas Alternativas


Dimensions

Abstract

This work describes the production and characterization of a composite material based on magnetite filled HDPE, which is commonly known for its magnetic properties. Composites of this kind are used in different applications such as microwave absorption, transducers and biomedical applications like drug delivery, organs tagging, etc. The samples were produced according to different volume ratios of magnetite and HDPE. The semiquantitative analysis conducted by XRD revealed the presence of hematite within the mineral magnetite used as a filler in the composites. The crystallinity degree was calculated through X-ray diffraction tests. The XRD results showed how there is an amorphous-crystalline transition due to the magnetite increasing content. The crystallinity percent (χc) for samples filled with 40% of magnetite volume was 90% while the (χc) for samples filled with 10% of magnetite volume was 80%. Which may be related to the increased magnetite particles into the plastic matrix for reinforcement contents up to 30% by volume, as evidenced in the images obtained through scanning electron microscopy (SEM). The samples were electrically characterized through volume resistivity measurements and electric polarization. The results showed that for ratios less than the 20% of magnetite there is no substantial reduction in the resistivity of the composite samples compared to the unfilled HDPE samples, but for magnetite ratios above 30% the composite samples showed a substantial reduction of six orders of  magnitude in their volumetric resistivity. The electric polarization showed how the composite material undergoes a transition, going from an insulating material (for samples with 10% of magnetite volume) to a resistive material where the current and voltage are in phase (for samples with 30% and 40% of magnetite volume). The magnetization curves showed that the saturation magnetization (from 17,3 to 60,5 emu/g) and remanence (from 0,94 to 5 emu/g) increase in samples with high magnetite contents. The presence of the hematite phase in the samples could have affected the magnetization saturation and the remanence values in the hysteresis curves. Magnetization curves as a function of temperature showed the Verwey samples transition around the 120K and confirmed that the magnetization increases as the magnetite volume within the matrix increases. © 2017. Acad. Colomb. Cienc. Ex. Fis. Nat.
https://doi.org/10.18257/raccefyn.422
PDF

References

Boettcher, C J F. (1952). Theory of electric polarization. Amsterdam: Elsevier.

Bohra M., Prasad S, Venketaramani N, Kumar N, Sahoo S C, Krishnan R. (2009). Magnetic properties of magnetite thin films close to the Verwey transition. Journal of Magnetism and Magnetic Materials. 321 (22): 3738-3741.

Bruggeman, D A G. (1935). Berechnung verschieddener physikalischer konstanten von heterogenen Substanzen. Ann Phys. 24: 636-664.

Buschow, K H J. (2014). Handbook of Magnetic Materials. North Holland: Elsevier B.V.

Carporzen L, Gilder S A, Hart R J. (2006). Origin and implications of two Verwey transitions in the basement rocks of the Vredefort meteorite crater, South Africa. Earth and Planetary Science Letters. 251 (3-4): 305-317.

Costa A L, Ballarin B, Spegni A, Casoli F, Gardini D. (2012). Synthesis of nanostructured magnetic photocatalyst by colloidal approach and spray–drying technique. Journal of colloid and interface science. 388 (1): 31-39.

Demir A, Baykal A, Sözeri H, Topkaya R. (2014). Low temperature magnetic investigation of Fe3O4 nanoparticles filled into multiwalled carbon nanotubes. Synthetic Metals. 187: 75-80.

Donescu D, Raditoiu V, Spataru C I, Somoghi R, Ghiurea M, Radovici C, Fierascu R C, Schinteie G, Leca A, Kuncser V. (2012). Superparamagnetic magnetite–divinylbenzene–maleic anhydride copolymer nanocomposites obtained by dispersion polymerization. European Polymer Journal. 48(10): 1709-1716.

Gu L, He X, Wu Z. (2014). Mesoporous Fe3O4/hydroxyapatite composite for targeted drug delivery. Materials Research Bulletin. 59: 65-68.

Guo Z., Park S, Hahn H T, Wei S, Moldovan M, Karki A B, Young, D P. (2007). Magnetic and electromagnetic evaluation of the magnetic nanoparticle filled polyurethane nanocomposites. Journal of applied physics. 101 (9): 09M511.

Hamoudeh M, Faraj A A, Canet-Soulas E, Bessueille F, Léonard D, Fessi H. (2007). Elaboration of PLLAbased superparamagnetic nanoparticles: Characterization, magnetic behaviour study and in vitro relaxivity evaluation. International Journal of Pharmaceutics. 338 (1-2): 248-257.

Harris L A, Goff J D, Carmichael, A Y, Riffle J S, Harburn J J, St. Pierre T G, Saunders M. (2003). Magnetite Nanoparticle Dispersions Stabilized with Triblock. Copolymers. Chemistry of Materials. 15 (6): 1367-1377.

Harrison R J, Putnis A. (1996). Magnetic properties of the magnetite-spinel solid solution: Curie temperatures, magnetic susceptibilities, and cation ordering. American Mineralogist. 81 (3-4): 375-384.

Jackson M, Bowles J, Banerjee S. (2011). The magnetite Verwey transition (Part A). The IRM Quarterly. 20 (4): 7-10.

Kong I, Hj Ahmad S, Hj Abdullah M, Hui D, Nazlim Yusoff A, Puryanti D. (2010). Magnetic and microwave absorbing properties of magnetite–thermoplastic natural rubber nanocomposites. Journal of Magnetism and Magnetic Materials. 322 (21):3401-3409.

Kong I, Ahmad S H, Abdullah M H, Yusoff, A N. (2009). The effect of temperature on magnetic behavior of magnetite nanoparticles and its nanocomposites. In AIP Conf Proc. 1136: 830-834.

Makled M H, Matsui T, Tsuda H, Mabuchi H, El-Mansy M K, Morii, K. (2005). Magnetic and dynamic mechanical properties of barium ferrite–natural rubber composites. Journal of Materials Processing Technology. 160 (2): 229-233.

Mansilla M V, Zysler R, Fiorani D, Suber L. (2002). Annealing effects on magnetic properties of acicular hematite nanoparticles. Physica B: Condensed Matter. 320 (1): 206-209.

Matweb Material Property Data. (November, 2014). Overview of materials for High Density Polyethylene (HDPE). Retrieved from Extruded.: http://www.matweb.com/search/DataSheet.aspx?MatGUID=482765fad3b443169ec28fb6f9606660.

Meseguer Dueñas J M, Gómez Tejedor J A, Olmos Sanchis J J, Quiles Hoyo J, Romero Colomer F. (1995). Problemas resueltos de electromagnetismo y semiconductores. Universidad Politécnica de Valencia: Servicio de Publicaciones SPUPV-99.

Mokhtar N, Abdullah M H, Ahmad S H. (2012). Structural and Magnetic Properties of Type-M Barium Ferrite–Thermoplastic Natural Rubber Nanocomposites. Sains Malaysiana. 41 (9): 1125-1131.

Mücke A, Raphael Cabral A. (2005). Redox and nonredox reactions of magnetite and hematite in rocks. Chemie der Erde – Geochemistry. 65 (3): 271-278.

Otake T, Wesolowski D J, Anovitz L M, Allard L F, Ohmoto H. (2007). Experimental evidence for non-redox transformations between magnetite and hematite under H2-rich hydrothermal conditions. Earth and Planetary Science Letters. 257 (1-2): 60-70.

Panwar V, Sachdev V K, Mehra, R. M. (2007). Insulator conductor transition in low-density polyethylene–graphite composites. European Polymer Journal. 43 (2): 573-585.

Ramajo L A, Cristóbal A A, Botta P M, Porto López J M, Reboredo M M, Castro M S. (2009). Dielectric and magnetic response of Fe3O4/epoxy composites. Composites Part A: Applied Science and Manufacturing, 40 (4): 388-393.

Razzaq M Y, Anhalt M, Frormann, Weidenfeller B. (2007). Thermal, electrical and magnetic studies of magnetite filled polyurethane shape memory polymers. Materials Science and Engineering A. 444 (1–2): 227-235.

Robinson P, Harrison R J, McEnroe S A, Hargraves, R B. (2004). Nature and origin of lamellar magnetism in the hematite-ilmenite series. American Mineralogist. 89 (5-6): 725-747.

Rosales C, Perera R, Matos M, Poirier T, Héctor R, Palacios J, et al. (2006). Influencia de la morfología sobre las propiedades mecánicas de nanocompuestos y mezclas de polímeros. Revista Latinoamericana de Metalurgia Y Materiales. 26 (1-2): 3-19.

Salazar Mejía C, Landínez Téllez D A, Roa-Rojas J. (2009). Caracterización Magnetoeléctrica del Nuevo Material de Tipo Perovskita Sr2TiMno6. Revista Colombiana de Física. 4 (2): 317-319.

Stewart S J, Borzi R A, Cabanillas E D, Punte G, Mercader R C. (2003). Effects of milling-induced disorder on the lattice parameters and magnetic properties of hematite. Journal of magnetism and magnetic materials. 260 (3): 447-454.

Stewart M, Cain M G. (1999). Ferroelectric Hysteresis Measurement & Analysis. NPL Report CMMT(A). 152: 1-57.

Tabiś W, Tarnawski Z, Kąkol Z, Król G, Kołodziejczyk A, Kozłowski A, Honig J. M. (2007). Magnetic and structural studies of magnetite at the Verwey transition. Journal of alloys and compounds. 442 (1): 203-205.

Tadić M, Čitaković N, Panjan M, Stojanović Z, Marković D, Spasojević, V. (2011). Synthesis, morphology, microstructure and magnetic properties of hematite submicron particles. Journal of Alloys and Compounds. 509 (28):7639-7644.

Thapa D, Palkar V R, Kurup M B, Malik S K. (2004). Properties of magnetite nanoparticles synthesized through a novel chemical route. Materials Letters. 58 (21): 2692-2694.

Weidenfeller B, Höfer M, Schilling F. (2002). Thermal and electrical properties of magnetite filled polymers. Composites Part A: Applied Science and Manufacturing. 33 (8): 1041-1053.

Zhang J, Rana S, Srivastava R S, Misra, R D K. (2008). On the chemical synthesis and drug delivery response of folate receptor-activated, polyethylene glycol-functionalized magnetite nanoparticles. Acta Biomaterialia. 4 (1): 40-48.

Zhang Z, Church N, Lappe S C, Reinecker M, Fuith A, Saines, P J, Carpenter, M A. (2001). Elastic and anelastic anomalies associated with the antiferromagnetic ordering transition in wüstite, FexO. Journal of Physics: Condensed Matter. 24 (21): 215-404.

Zhao H, Saatchi K, Häfeli U O. (2009). Preparation of biodegradable magnetic microspheres with poly(lactic acid)- coated magnetite. Journal of Magnetism and Magnetic Materials. 321 (10): 1356-1363.

Zheng X, Zhou S, Xiao Y, Yu X, Li X, Wu P. (2009). Shape memory effect of poly(d,l-lactide)/Fe3O4 nanocomposites by inductive heating of magnetite particles. Colloids and Surfaces B: Biointerfaces. 71 (1): 67-72.

Zysler R D, Vasquez-Mansilla M, Arciprete C, Dimitrijewits M, Rodriguez-Sierra D, Saragovi C. (2001). Structure and magnetic properties of thermally treated nanohematite. Journal of magnetism and magnetic materials. 224 (1): 39-48.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2017 Journal of the Colombian Academy of Exact, Physical and Natural Sciences