Abstract
The Study on the stability of relativistic disks is on the of the most important criteria for the characterization of astrophysically relevant galactic or accretion disks models. In this paper, we perform an analysis of the stability of static axisymetric relativistic thin disks, by introducing gafirst-order perturbation in to the energy-momentumten sor of the fluid. The formalism is applied to three particular models built with the aid of the displace-cut-reflect(DCR) method, and previously considered in literature (Ujevicand Letelier, 2004), but modifying the mass criteria, i. e., using the Komar mass in stead of the total surface mass. Under this conditions, it is found that the total mass values are independent of the parameters of the DCR-method, which let us choose the boundary condition for the cutoff radius, such that it takes the maximum value that allows an appreciable and well-behaved perturbation on the disk. As a general result, we found that the Komar mass is more appropriate to define the cutoff radius.
References
Bicák, J., Lynden-Bell, D. and Pichon, C. (1993). Relativistic Disks and Flat Galaxy Models. Mon. Not. R. Astron. Soc. 265, 126.
Ledvinka, T., Zofka, M. and Bic´ak, J. (1998). Relativistic Disks as Sources of the Kerr-Newman Fields. Proc. of the MGM8 Meeting, Jerusalem.
Muñoz, J. A. et. al. (2011). A study of gravitational lens chromaticity with the hubble space telescope Based on observations made with the NASA-ESA Hubble Space Telescope. Astrophys. J., 742, 67.
Alpar, M. A. (2001). On young neutron stars as propellers and accretors with conventional magnetic fields. Astrophys. J. 554(2),1245.
Bonnor, W. B. and Sackfield, A. (1968). The interpretation of some spheroidal metrics. Commun. Math. Phys. 8, 338.
Morgan, T. and Morgan, L. (1969). The gravitational field of a disk. Phys. Rev. 183, 1097.
Pichon, C. and Lynden-Bell, D. (1996). New Sources of Kerr and other Metrics: Rotating Relativistic Disks with Pressure Support. Mon. Not. R. Astron. Soc. 280, 1007 Phys. Rev. D. 45, 3534.
González, G. A. and Letelier, P. S. (2000). Rotating relativistic thin disks. Phys. Rev. D. 62, 064025.
Lemos, J. P. S. and Letelier, P. S. (1993). Superposition of Morgan and Morgan discs with a Schwarzschild black hole. Class. Quantum Grav. 10, L75.
Semerák, O. (2002). Thin disc around a rotating black hole, but with support in-between. Class. Quantum Grav. 19,3829.
Semerák, O. (2004). Exact power-law discs around static black holes. Class. Quantum Grav. 21, 2203.
Semerák, O. (2002). Following the Prague Inspiration, to Celebrate the 60th Birthday of Jiri Bic´ak. World Scientific, Singapore.
Bicák, J., Lynden-Bell, D. and Katz, J. (1993). Relativistic Disks as Sources of Static Vacuum Spacetimes. Phys. Rev.D. 47, 4334.
Vogt, D. and Letelier, P. S. (2005). New models of general relativistic static thick disks. Phys. Rev. D. 71, 084010.
Vogt, D. and Letelier, P. S. (2003). Exact general relativistic perfect fluid disks with halos. Phys. Rev. D. 68, 084010.
Seguin, F.H. (1975). Stability of nonuniform rotation in relativistic stars. Astrophys. J. 197, 745.
Ujevic, M., and Letelier, P. S. (2004). Stability of general relativistic geometric thin disks. Phys. Rev D. 70, 084015.
Papapetrou A. and Hamouni A. (1968). Couches simples de matiére en relativité générale. Ann. Inst. Henri Poncaré. 9, 179.
Poisson, E. A (2014). Relatist´s tolkit: the mathematics of black-hole mechanics. Cambridge university press.
Jaramillo, J. L. and Gourgoulhon, E. (2009). Mass and motion general relativity. Springer Netherlands.
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright (c) 2017 Journal of the Colombian Academy of Exact, Physical and Natural Sciences