Abstract
The metamorphic rock of the Silgará formation (sensu lato), of pre-Devonian age, cropping out at the central region of the Santander massif (Colombian Eastern Cordillera), presents slightly boudinated hydrothermal quartz and kyanite veins parallel to the regional metamorphic foliation. These veins are considered as exceptional manifestations due to their restricted distribution in the context of the Santander Massif and their composition and genesis. Kyanite crystals are observed, 1) in the proximity to the contact with the wall metapelitic rocks (affected by amphibolite facies metamorphism, staurolite-kyanite zone), showing a direction parallel to the metamorphic foliation, which indicates a progressive growth during the opening of the vein, and 2) toward the center of the vein, exhibiting random orientation, which suggests a growth control without significant efforts. Based on lithological relationships and paragenetic studies, it is possible to suggest that the formation of these hydrothermal veins is related to the circulation or scape of hydrothermal fluids typical of magmatic- hydrotermal events of Ordovician? age. © 2017. Acad. Colomb. Cienc. Ex. Fis. Nat.References
Ague, J.J. (1994a). Mass transfer during Barrovian metamorphism of pelites, south-central Connecticut. I: evidence for changes in composition and volume. American Journal of Science, 294 (8):989-1057.
Ague, J.J. (1994b). Mass transfer during Barrovian metamorphism of pelites, south-central Connecticut. II: channelized fluid flow and the growth of staurolite and kyanite. American Journal of Science, 294 (8): 1061-1134.
Ague, J.J. (1995). Deep-crustal growth of quartz, kyanite and garnet into large-aperture, fluid-filled fractures, north-eastern Connecticut, USA. Journal of Metamorphic Geology, 13 (2): 299-314.
Allaz, J., Maeder, X., Vannay, J. & Steck, A. (2005). Formation of aluminosilicate-bearing quartz veins in the Simano nappe (Central Alps): structural, thermobarometric, and oxygen isotope constraints. Schweizerische Mineralogische und Petrographische Mitteilungen, 85 (2-3): 191-214.
Beane, R.J. & Field, C.K. (2007). Kyanite deformation in whiteschist of the ultrahigh-pressure metamorphic Kokchetav Massif, Kazakhstan. Journal of Metamorphic, 25 (2): 117-128.
Beitter, T., Wagner, T. & Markl, G. (2008). Formation of kyanite–quartz veins of the Alpe Sponda, Central Alps, Switzerland: implications for Al transport during regional metamorphism. Contributions to Mineralogy and Petrology, 156 (6): 689-707.
Boinet, T., Bourgois, J., Bellon, H. & Toussaint, J. (1985). Age et repartition du magmatism Premesozoique des Andes de Colombie. Comptes rendus hebdomadaires des séaces de L’Académie des Sciences. Serie D: SciencesNaturalles, 300 (II): 445-450.
Botello, F., Mantilla, L.C. & Colegial, J.D. (2014). Edad U-Pb en zircones y contexto tectónico de formación del Granito de Durania (Macizo de Santander, Colombia). Memorias XI Semana Técnica de Geología y I Geosciences anual meeting. UIS. Bucaramanga, 11 al 15 de Agosto de 2014.
Bucholz, C.E. & Ague, J.J. (2010). Fluid flow and Al transport during quartz-kyanite vein formation, Unst, Shetland Islands, Scotland. Journal of Metamorphic Geology, 28 (1): 19-39.
Carmichael, D. (1969). On the mechanism of prograde metamorphic reactions in quartz-bearing pelitic rocks. Contribution to Mineralogy and Petrology, 20 (3): 244-267.
Campos, N. (1999). Estudio Mineralógico y Petrográfico de las Metamorfitas al Occidente del Municipio de Mutiscua (Norte de Santander). Tesis de Pregrado, Universidad Industrial de Santander, Bucaramanga (Colombia).
Castellanos, O.M. (2001). Chemical composition of the rockforming minerals in the Silgará formation and P-T conditions in the Mutiscua area, Santander Massif, Eastern Cordillera, Colombia. Unpublished Master Thesis, Shimane University, Matsue (Japan).
Castellanos, O.M., Ríos, C.A. & Takasu A. (2004). Chemically sector-zoned garnets in the metapelitic rocks of the Silgará Formation in the central Santander Massif, Colombian Andes: occurrence and growth history. Boletín de Geología, 26 (1): 91-98.
Castellanos, O.M., Ríos, C.A. & Takasu A. (2008). A new approach on the tectonometamorphic mechanisms associated with P–T paths of the Barrovian-type Silgará Formation at the Central Santander Massif, Colombian Andes. Earth Sciences Research Journal, 12 (2): 125-155.
Caviedes, M.A. & Gómez, R.E. (2006). Petrogénesis de venas hidrotermales con cianita en rocas metapelíticas de la Formación Silgará, región central del Macizo de Santander. Tesis de Pregrado, Universidad Industrial de Santander, Bucaramanga (Colombia).
Cesare, B. (1994). Synmetamorphic veining: origin of andalusitebearing veins in the Vedrette di Ries contact aureole, eastern Alps, Italy. Journal of Metamorphic Geology, 12 (5):643-653.
Chinner, G.A. (1961). The origin of sillimanite in Glen Clova, Angus. Journal of Petrology, 2 (3): 312-323.
Clavijo, J. (1994). Mapa geológico generalizado del Departamento de Norte de Santander, Memoria explicativa. Informe interno INGEOMINAS, 67p.
Cordani, U., Cardona, A., Jimenez, D., Liu, D. & Nutman, A. (2005). Geochronology of Proterozoic basement inliers in Colombian Andes: tectonic history of remnants of a fragmented grenville belt. In: terrane processes at margins of gondwana. Geological Society, London, Special Publications. Edited by Vaughan, A., Leat, P., and Pankhurst, R., 246: 329-346.
Etheridge, M.A., Wall, V.J. & Cox, S.F. (1984). High fluid pressures during regional metamorphism and deformation: implications for mass transport and deformation mechanisms. Journal of Geophysical Research, 89 (6): 4344-4358.
Ferry, J.M. (1992). Regional metamorphism of the Waits River Formation, eastern Vermont: Delineation of a new type of giant metamorphic hydrothermal system. Journal of Petrology, 33 (1): (4594).
Foster, C. (1986). Thermodynamic models of reactions involving garnet in sillimanite/staurolite schist. Mineralogical Magazine, 50:427-439.
García, C.A., Ríos, C.A. & Castellanos, O.M. (2005). Mediumpressure metamorphism in the central Santander Massif, Eastern Cordillera, Colombian Andes: constraints for a collision model. Boletín de Geología, 27 (2): 43-68.
Grant, J.A. (1986). The isocon diagram; a simple solution to Gresens’equation for metasomatic alteration. Economic Geology, 81 (8): 1976-1982.
Julivert, M. (1970). Cover and basement tectonics in the Cordillera Orientalof Colombia, South America, and a comparison with some other folded chains. Geological Society American Bulletin, 81: 3623-3643.
Kerrick, D. (1990). The Al2SiO5 polymorphs. Reviews in Mineralogy 22. Mineralogical Society of America, Washington, D.C., 406p.
Kretz, R. (1983). Symbols for rock-forming minerals. American Mineralogist, 68: 277-279.
Lentz, D.R. & Gregoire, C. (1995). Petrology and mass-balance constraints on major-, trace- and rare-earth-element mobility in porphyry-greisen alteration associated with epizonal True Hill granite, south-western New Brunswick, Canada. Journal of Geochemical Exploration, 52 (3): 303-331.
Lang, H.D. & Dunn, G.R. (1990). Sequential porphyroblast growth during deformation in a low pressure metamorphic terrane, Orrs Island, Haspswell Neck, Maine. Journal of Metamorphic Geology, 8 (2): 199-216.
Larson, T.E. & Sharp, Z.D. (2003). Stable isotopic constraints on the Al2SiO5 “triple point” rocks from the Proterozoic Priest pluton contact aureole, New Mexico, USA. Journal of Metamorphic Geology, 21 (8): 785-798.
Mantilla, L.C., Ríos, C.A., Gélvez, J.R., Márquez, R.E., Ordoñez, J.C. & Cepeda, S. (2003). Nuevas evidencias acerca de la presencia de una banda de cizallamiento en la Formación Silgará del sector Aratoca-Pescadero (Macizo de Santander). Boletín de Geología, 25 (40): 81-90.
Mantilla, L.C., Bissig, T., Cottle, J.M. & Hart, C. (2012). Remains of early Ordovician mantle-derived magmatism in the Santander Massif (Colombian Eastern Cordillera). Journal of South American Earth Sciences, 38: 1-12.
Mantilla, L.C., García, C.A. & Valencia, V. (2016). Propuesta de escisión de la denominada ‘Formación Silgará’ (Macizo de Santander, Colombia) a partir de edades U-Pb en circones detríticos. Boletín de Geología, 38 (1): 33-50.
Masters, R.L. & Ague, J.J. (2005). Regional-scale fluid flow and element mobility in Barrow’s metamorphic zones, Stonehaven, Scotland. Contributions to Mineralogy and Petrology, 150: 1-18.
McLelland, J., Morrison, J., Selleck, B., Cunningham, B., Olson, C. & Schmidt, K. (2002). Hydrothermal alteration of late- to post- tectonic Lyon Mountain granitic gneiss, Adirondack Mountains, New York: origin of quartzsillimanite segregations, quartz-albite lithologies, and associated Kiruna-type low-Ti-Fe-oxide deposits. Journal of Metamorphic Geology, 20 (1): 175-190.
Nabelek, P. (1997). Quartz-sillimanite leucosomes in high-grade schists, Black Hills, South Dakota: a perspective on the mobility of Al in high-grade metamorphic rocks. Geology, 25 (11): (995-998).
Okayuma-Kusunose, Y. (1994). Phase relations in andalusitesillimanite type Fe-rich metapelites; Tono contact metamorphic aureole, Northeast Japan. Journal of Metamorphic Geology, 12 (2): 153-168.
Putlitz, B., Valley, J.W., Matthews, A. & Katzir, Y. (2002). Oxygen isotope thermometry of quartz– Al2SiO5 veins in high-grade metamorphic rocks on Naxos island (Greece). Contributions to Mineralogy and Petrology, 143 (3): 350-359.
Restrepo-Pace, P.A. & Cediel, F. (2010). Northern South America basement tectonics and implications for paleocontinental reconstructions of the Americas. Journal of South American Earth Sciences, 29: 764-771.
Royero, J. & Clavijo, J. (1994). Mapa Geológico generalizado departamento de Santander. Escala 1: 400.000. Informe INGEOMINAS, 92p.
Ryan, N.A. (2010). Microstructures of a deformed kyanite–quartz vein of the Raft River Mountains in northwest Utah, USA. Undergraduate Thesis of Bachelor of Arts, Carleton College, Northfield, Minnesota.
Sepahi, A.A., Whitney, D.L. & Baharifar, A.A. (2004). Petrogenesis of andalusite-kyanite-sillimanite veins and host rocks, Sanandaj-Sirjan metamorphic belt, Hamadan, Iran. Journal of Metamorphic Geology, 22 (2): 119-134.
Silva, J.C., Sial, A.N., Ferreira, V.P. & Estrada, J.J. (2004). C-isotope stratigraphy of a Vendian carbonate succession in northwestern Andes: Implications for the NW Andes. In: IV Reunión Ciencias de la Tierra, Querétaro (México), Abstracts, vol. 198.
Spear, J.A. (1982). Metamorphism of pelitic rocks of the Snyder Group in the contact aureole of the Kiglapait layered intrusión, Labrador: effect of buffering partial pressures of wáter. Canadian Journal of Earth Sciences, 19 (10):1888-1909.
Stout, M.Z., Crawford, M.L. & Ghent, E.D. (1986). Pressuretemperature evolution of fluid compositions of Al2SiO5- bearing rocks, Mica Creek, B.C. in light of fluid inclusion data and mineral equilibrium. Contributions to Mineralogy and Petrology, 92 (2): 236-247.
Thompson, A.B. (1975). Calc-silicate diffusion zones between marble and pelitic schist. Journal of Petrology, 16 (1): 314-346.
Van der Lilej, R., Spikings, R., Ulianov, A., Chiaradia, M. & Mora, A. (2016). Palaeozoic to Early Jurassic history of the northwestern corner of Gondwana, and implications for the evolution of the Iapetus, Rheic and Pacific Oceans. Gondwana Research, 31: 271-294.
Verdes, G., Gout, R. & Castet, S. (1992). Thermodynamic properties of the aluminate ion and of bayerite, boemite, diaspore, and gibbsite. European Journal of Mineralogy, 4 (4):767-792.
Ward, D.E., Goldsmith, R., Cruz, B.J., Jaramillo, C.L. & Vargas, L.R. (1970). Mapa Geológico del Cuadrángulo H-13, Pamplona, Colombia. Ingeominas.
Ward, D.E., Goldsmith, R., Cruz, B.J., Jaramillo, C.L. & Restrepo, H. (1973). Geología de los Cuadrángulos H-12,Bucaramanga y H-13, Pamplona, Departamento de Santander. U.S. Geological Survey e Ingeominas. Boletín Geológico, XXI (1-3): 1-132.
Widmer, T. & Thompson, A. (2001). Local origin of high pressure vein material in eclogite facies of the Zermatt-Saas Zone, Switzerland. American Journal of Science, 301 (7): 627-656.
Whitney, D.L. & Dilek, Y. (2000). Andalusite-sillimanite-quartz veins as indicators of low-pressure-high-temperature deformation during late-stage unroofing of a metamorphic core complex, Turkey. Journal of Metamorphic Geology, 18 (1):59-66.
Yardley, B.W.D. (1975). On some quartz-plagioclase veins in the Connemara schists, Ireland. Geological Magazine, 112:183-190.
Yardley, B.W.D., Leake, B.E. & Farrow, C.M. (1980). The metamorphism of Fe-rich pelites from Connemara, Ireland. Journal of Petrology, 21 (2): (365-399).
Yardley, B.W.D. (1986). Fluid migration and veining in the Connemara Schists, Ireland. In J.V. Walther and B.J. Wood, Eds., Fluid-rock Interactions During Metamorphism: Springer-Verlag, New York p. 109-131.
Yardley, B.W.D. & Bottrell, S.H. (1992). Silica mobility and fluid movement during metamorphism of the Connemara schists, Ireland. Journal of Metamorphic Geology, 10 (3):453-464. http://www.sfu.ca/~marshall/sem/mineral.htm. Mineral Energy Dispersive Spectra (EDS) Consulted on 15 September, 2014.
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright (c) 2017 Journal of the Colombian Academy of Exact, Physical and Natural Sciences