Metamaterials: main features and applications
PDF (Español (España))

How to Cite

Castellanos, L. M., Lopez, F., & Reyes - Vera, E. (2016). Metamaterials: main features and applications. Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 40(156), 395–401. https://doi.org/10.18257/raccefyn.345

Downloads

Download data is not yet available.

Métricas Alternativas


Dimensions

Abstract

Electromagnetic properties of all materials existing in nature can be determined from two parameters, the magnetic permeability and the electrical permittivity, which allow us to characterize the response of any material when this interacts with an electromagnetic wave. In principle, there is no limit to the range of values that can be taken bythe se two parameters. Therefore, it is possible to design and construct materials with specific characteristics of electromagnetic response not found in nature will. These materials manufactured in the laboratory received the generic name of Metamaterials, and among them the well-known by LHM, are so called because the vectors of field of electromagnetic waves travelling in the interior are related by the rule of the left hand. The distinctive characteristic of the LHM is that for certain bands of frequency they present negative index of refraction with possible propagative modes. This phenomenon appears only if both parameters μ and ε, within these bands of frequencies are simultaneously negative. The purpose of this paper is to present the principles and foundations of these metamaterials so that it wakes up the interest of not specialized readers. © 2016. Acad. Colomb. Cienc. Ex. Fis. Nat. All rights reserved.

https://doi.org/10.18257/raccefyn.345
PDF (Español (España))

References

Almoneef, T., & Ramahi, O. M. (2015). Split-ring resonator arrays for electromagnetic energy harvesting. Progress In Electromagnetics Research B, 62(January), 167–180. doi:10.2528/PIERB15012506.

Baena, J. D., Bonache, J., Martin, F., Sillero, R. M., Falcone, F., Lopetegi, T., … Sorolla, M. (2005). Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines. IEEE Transactions on Microwave Theory and Techniques, 53(4), 1451–1461. doi:10.1109/TMTT.2005.845211.

C.Caloz and T. Itoh. (2006). Transmission Line Theory and Microwave Applications. (I. John Wiley & Sons, Ed.) (First.).

Chaimool, S., Chung, K. L., & Akkaraekthalin, P. (2010). Simultaneous gain and bandwidths enhancement of a single-feed circularly polarized microstrip patch antenna using a metamaterial reflective surface. Progress In Electromagnetics Research B, 22, 23–37. doi:10.2528/PIERB10031901.

Cheng, X., Senior, D. E., Kim, C., & Yoon, Y.-K. (2011). A Compact Omnidirectional Self-Packaged Patch Antenna With Complementary Split-Ring Resonator Loading for Wireless Endoscope Applications. IEEE Antennas and Wireless Propagation Letters, 10, 1532–1535. doi:10.1109/LAWP.2011.2181315.

Falcone, F., Lopetegi, T., Laso, M. A. G., Baena, J. D., Bonache, J., Beruete, M., … Sorolla, M. (2004). Babinet principle applied to the design of metasurfaces and metamaterials. Physical Review Letters, 93(19), 2–5. doi:10.1103/PhysRevLett.93.197401.

Gil, M., Bonache, J., & Martín, F. (2008). Metamaterial filters: A review. Metamaterials, 2(4), 186–197. doi:10.1016/j.metmat.2008.07.006.

Heald, J. B. M. and M. A. (1994). Classical Electromagnetic radiation (Third.).

Jao, P., & Senior, D. E. (2011). Reconfigurable split ring resonator array loaded waveguide for insitu tuning. In 2011 IEEE International Symposium on Antennas and Propagation (APSURSI) (pp. 2947–2950). IEEE. doi:10.1109/APS.2011.5997146.

Li, L.-W., Li, Y.-N., Soon Yeo, T., Mosig, J. R., & Martin, O. J. F. (2011). Addendum: “A broadband and high-gain metamaterial microstrip antenna.” Applied Physics Letters, 99(15), 159901. doi:10.1063/1.3651481.

Linden, S. (2004). Magnetic Response of Metamaterials at 100 Terahertz. Science, 306(5700), 1351–1353. doi:10.1126/science.1105371.

Linden, S., Enkrich, C., Dolling, G., Klein, M. W., Zhou, J., Koschny, T., … Wegener, M. (2006). Photonic Metamaterials: Magnetism at Optical Frequencies. IEEE Journal of Selected Topics in Quantum Electronics, 12(6), 1097–1105. doi:10.1109/JSTQE.2006.880600.

Ma, F., Lin, Y.-S., Zhang, X., & Lee, C. (2014). Tunable multiband terahertz metamaterials using a reconfigurable electric split-ring resonator array. Light: Science & Applications, 3(5), e171. doi:10.1038/lsa.2014.52.

Marqués, R., Medina, F., & Rafii-El-Idrissi, R. (2002). Role of bianisotropy in negative permeability and left-handed metamaterials. Physical Review B, 65(14), 1–6. doi:10.1103/PhysRevB.65.144440.

Marques, R., Mesa, F., Martel, J., & Medina, F. (2003). Comparative analysis of edge- and broadside- coupled split ring resonators for metamaterial design - theory and experiments. IEEE Trans. Ant. Propagat., 51(10), 2572–2581. doi:10.1109/TAP.2003.817562.

Meng, F. Y., Wu, Q., Jin, B. S., Wang, H. L., & Wu, J. (2007). Waveguide miniaturization using uniaxial negative permeability metamaterial. IEEE Transactions on Antennas and Propagation. doi:10.1109/TAP.2007.891880.

Ouedraogo, R. O., & Rothwell, E. J. (2010). Metamaterial inspired patch antenna miniaturization technique. In 2010 IEEE Antennas and Propagation Society International Symposium (pp. 1–4). IEEE. doi:10.1109/APS.2010.5561205.

Ouedraogo, R. O., Rothwell, E. J., Diaz, A. R., Fuchi, K., & Temme, A. (2012). Miniaturization of patch antennas using a metamaterial-inspired technique. IEEE Transactions on Antennas and Propagation, 60(5), 2175–2182. doi:10.1109/TAP.2012.2189699.

Pendry, J. B., Holden, a. J., Robbins, D. J., & Stewart, W. J. (1999). Magnetism from conductors and enhanced nonlinear phenomena. IEEE Transactions on Microwave Theory and Techniques, 47(11), 2075–2084. doi:10.1109/22.798002.

Pendry, J. B., Holden, A. J., Robbins, D. J., & Stewart, W. J. (1999). Low frequency plasmons in thin-wire structures. Journal of Physics: Condensed Matter, 10(22), 4785–4809. doi:10.1088/0953-8984/10/22/007.

Pendry, J., Holden, A., Stewart, W., & Youngs, I. (1996). Extremely Low Frequency Plasmons in Metallic Mesostructures. Physical Review Letters, 76(25), 4773–4776. doi:10.1103/PhysRevLett.76.4773.

Schurig, D., Mock, J. J., Justice, B. J., Cummer, S. A., Pendry, J. B., Starr, A. F., & Smith, D. R. (2006). Metamaterial Electromagnetic Cloak at Microwave Frequencies. Science, 314(5801), 977–980. doi:10.1126/science.1133628.

Senior, D. E., Cheng, X., Jao, P., Kim, C., Kim, J. K., & Yoon, Y. (2011). Wireless passive sensing application using a cavity loaded evanescent mode half mode substrate integrated waveguide resonator. In 2011 16th International Solid-State Sensors, Actuators and Microsystems Conference (pp. 2014–2017). IEEE. doi:10.1109/TRANSDUCERS.2011.5969205.

Shelby, R. A. (2001). Experimental Verification of a Negative Index of Refraction. Science, 292(5514), 77–79. doi:10.1126/science.1058847

Smith, D., Padilla, W., Vier, D., Nemat-Nasser, S., & Schultz, S. (2000). Composite Medium with Simultaneously Negative Permeability and Permittivity. Physical Review Letters, 84(18), 4184–4187. doi:10.1103/PhysRevLett.84.4184.

Smith, D. R., Padilla, W. J., Vier, D. C., Nemat-Nasser, S. C., & Schultz, S. (2000). Composite medium with simultaneously negative permeability and permittivity. Physical Review Letters, 84(18), 4184–4187. doi:10.1103/PhysRevLett.84.4184.

Veselago, V. (1968). The Electrodynamics of substances with simultaneously negative values of ε and μ. Soviet Physics Uspekhi, 10(4), 509–514.

Wang, L., & Li, J. L. (2006). A Novel Metamaterial Microstrip Antenna of Broadband and High-Gain. In Proceedings of ISAP2012 (pp. 806–809). Nagoya, Japan.

Wu, B.-I., Wang, W., Pacheco, J., Chen, X., Grzegorczyk, T. M., & Kong, J. A. (2005). A study of using metamaterials as antenna substrate to enhance gain. Progress In Electromagnetics Research, 51, 295–328. doi:10.2528/PIER04070701.

Yen, T. J., Padilha, W. J., Fang, D. N., Vier, D. C., Smith, D. R., Pendry, J. B., … Zhang, X. (2004). Terahertz Magnetic Response from Artificial Materials. Science, 303(2004), 1494–1496. doi:10.1017/CBO9781107415324.004.

Declaration of originality and transfer author's rights

The authors declare:

  1. The published data and reference materials have been duly identified with their respective credits and have been included in the bibliographic notes and citations that have been so identified and that should it be required, I have all releases and permissions from any copyrighted material. 
  2. All material presented is free from any copyright and that I accept full legal responsibility for any legal claims relating to copyrighted intellectual property, fully exonerating from responsibility the Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales.
  3. This work is unpublished and will not be sent to any other journal while waiting for the editorial decision of this journal. I declare that there is no conflict of interest in this manuscript.
  4. In case of publication of this article, all author´s rights are transferred to the Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, and so cannot be reproduced in any form without the express permission of it.
  5. By means of this document, if the article is accepted for publication by the Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, the Revista assumes the right to edit and publish the articles in national and international indices or data bases for academic and scientific use in paper, electronic, CD-ROM, internet form either of the complete text or any other known form known or to be known and non-commercial, respecting the rights of the authors.

Transfer of author rights

In case the article is approved for publication, the main author in representation of himself and his co-authors or the main author and his co-authors must cede the author rights of the corresponding article to the Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, except in the following cases:

The authors and co-authors will retain the right to revise, adapt, prepare derived works, oral presentations, and distribution to some colleagues of reprints of their own published work, if the corresponding credit is given to the Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales. It is also permissible to publish the title of the work, summary, tables, and figures of the work in the corresponding web sites of the authors or their employers, also giving credit to the Revista.

If the work has been realized under contract, the author’s employer has the right to revise, adapt, prepare derivative works, reproduce, or distribute in hard copy the published work, in a secure manner and for the exclusive use of his employees.

If the Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales were approached for permission by a third party for using, printing, or publishing specifically articles already published, the Revista must obtain the express permission of the author and co-authors of the work or of the employer except for use in classrooms, libraries, or reprinted in a collective work. The Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales reserves the possible use in its front cover of figures submitted with the manuscripts.

No other right, other than the author’s right, can be claimed by the Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales.