Topological properties of spaces of projective unitary representations
PDF

How to Cite

Espinoza, J., & Uribe, B. (2016). Topological properties of spaces of projective unitary representations. Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 40(155), 337–352. https://doi.org/10.18257/raccefyn.317

Downloads

Download data is not yet available.

Métricas Alternativas


Dimensions

Abstract

Let G be a compact and connected Lie group and PU(H) be the group of projective unitary operators on a separable Hilbert space H endowed with the strong operator topology. We study the space Hom_{st}(G,PU(H)) of continuous homomorphisms from G to PU(H) which are stable, namely the homomorphisms whose induced representation contains each irreducible representation an infinitely number of times. We show that the connected components of Hom_{st}(G,PU(H)) are parametrized by the isomorphism classes of S^1- entral extensions of G, and that each connected component has the group Hom(G,S^1) for fundamental group and trivial higher homotopy groups. We study the conjugation map PU(H) -> Hom_{st}(G,PU(H)), F |-> F\alpha F^{-1}, we show that it has no local cross sections and we prove that for a map B -> Hom_{st}(G,PU(H)) with B paracompact, local lifts to PU(H) do exist. © 2016. Acad. Colomb. Cienc. Ex. Fis. Nat. All rights reserved.

https://doi.org/10.18257/raccefyn.317
PDF

References

Atiyah, M. and Segal, G. (2004). Twisted K-theory. Ukranian Mathematical Bulletin, 1(3):291–334.

Bárcenas, N., Espinoza, J., Joachim, M. and Uribe,B (2014) Universal twist in equivariant K-theory for proper and discrete actions. Proc. Lond. Math. Soc. (3), 108(5):1313–1350.

Dixmier, J. and Douady, A. (1963). Champs continus d’espaces hilbertiens et de C-algèbres. Bull. Soc. Math. France, 91:227–284.

Espinoza, J. and Uribe, B. (2014). Topological properties of the unitary group. JP Journal of Geometry and Topology, 16(1):45–55.

Jänich, K. (1965). Vektorraumbündel und der Raum der Fredholm-Operatoren. Math. Ann., 161:129–142.

Lück, W. and Uribe, B. (2014). Equivariant principal bundles and their classifying spaces. Algebraic and Geometric Topology, 14(4):1925–1995.

May, J. P. (1996). Equivariant homotopy and cohomology theory, volume 91 of CBMS Regional Conference Series in Mathematics. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI.

May, J. P. and Sigurdsson, J. (2006). Parametrized homotopy theory, volume 132 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI.

Munkres, J. R. (2000). Topology, Second Edition. Prentice-Hall, Inc., Englewood Cliffs, N.J.

Simms, D. J. (1970) Topological aspects of the projective unitary group. Proc. Camb. Phil. Soc., 68:57–60.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2016 Journal of the Colombian Academy of Exact, Physical and Natural Sciences