Abstract
A derivation of the differential equations which govern the. three-dimensional two-body problem utilizing variables such as the velocity, azimuth, flight-path angle and spherical coordinates is presented. Besides, the deduction of the equations is presented when a perturbation force appears due to oblateness of the central body. Direct transformation between these and rectangular coordinates (and inverse) is commented.
Keywords
References
Baldwin, B. & Y. Sheaffer. 1971. Ablation and breakup of large meteoroids during atmospheric entry. J. Geophys. Res. 76 (19): 4653-4668.
Brouwer, D. 1959. Solution of the problem of artificial satellite theory without drag. Astron. J. 64 (1274): 378-397.
Brouwer, D. & G. Clemence. 1961. Methods of celestial mechanics. Academic Press, Londres.
Cowell, P. & A. Crommelin. 1910. Investigation of the motion of Halley's comet from 1759-1910. Appendix to Greenwich Observations 1909. Neill, Bellevue, Londres.
Everhart, E. 1985. An efficient integrator that uses Gauss-Radau spacings. Dynamics of comets: Their origin and evolution, Carusi y Valsecchi (eds.): 185-202.
Feeley, T. & J. Speyer. 1993. Approximate optimal guidance for the advanced launch system. NASA Contractor Report 4568.
Garfinkel, B. 1959. The orbit of a satellite of an oblate planet. Astron. J. 64 (1274): 353-367.
Goldstein, H. 1963. Mecánica clásica. Aguilar Ediciones, Madrid.
Irigoyen, R. & C. Simó. 1993. Non-integrability of the J2 problem. Cel. Mech. & Dyn. Astron. 55 (3): 281-287.
Kaula, W. 1966. Theory of satellite geodesy. Blaisdell Publ. Comp., Waltham, Massachusetts.
Kinoshita, H. & H. Nakai. 1989. Numerical integration methods in dynamical astronomy. Cel. Mech. & Dyn. Astron. 45 (3): 231-244.
Kinoshita, H. & H. Yoshida. 1991. Symplectic integrators and their application to dynamical astronomy. Cel. Mech. & Dyn. Astron. 50 (1): 59-71.
Kosai, Y. 1959. The motion of close Earth satellites. Astron. J. 64 (1274): 367-377.
McCuskey, S. 1963. Introduction to celestial mechanics. Addison-Wesley, Reading, Massachusetts.
Seidelmann, P. K. 1992. Explanatory supplement to the astronomical almanac. University Science Books, Mill Valley, California.
Standish, E. 1982. The JPL planetary ephemerides. Cel. Mech. & Dyn. Astron. 26 (2): 181-186.
Stiefel, E. & G. Scheifele. 1971. Linear and regular celestial mechanics. Springer-Verlag, Berlin.
Teukolsky, S. 1992. Numerical recipes in Fortran. Cambridge Univ. Press, New York.
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.