TWO BODY AND MAIN SATELLITE PROBLEMS IN DIFFERENTIAL EQUATIONS OF FIRST ORDER
PDF (Español (España))

How to Cite

Portilla B., J. G. (2024). TWO BODY AND MAIN SATELLITE PROBLEMS IN DIFFERENTIAL EQUATIONS OF FIRST ORDER. Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 20(76), 25–32. https://doi.org/10.18257/raccefyn.20(76).1996.3016

Downloads

Download data is not yet available.

Métricas Alternativas


Dimensions

Abstract

A derivation of the differential equations which govern the. three-dimensional two-body problem utilizing variables such as the velocity, azimuth, flight-path angle and spherical coordinates is presented. Besides, the deduction of the equations is presented when a perturbation force appears due to oblateness of the central body. Direct transformation between these and rectangular coordinates (and inverse) is commented.

https://doi.org/10.18257/raccefyn.20(76).1996.3016

Keywords

Celestial mechanics | two-body problem | main artificial satellite problem | differential equations | numerical integration
PDF (Español (España))

References

Baldwin, B. & Y. Sheaffer. 1971. Ablation and breakup of large meteoroids during atmospheric entry. J. Geophys. Res. 76 (19): 4653-4668.

Brouwer, D. 1959. Solution of the problem of artificial satellite theory without drag. Astron. J. 64 (1274): 378-397.

Brouwer, D. & G. Clemence. 1961. Methods of celestial mechanics. Academic Press, Londres.

Cowell, P. & A. Crommelin. 1910. Investigation of the motion of Halley's comet from 1759-1910. Appendix to Greenwich Observations 1909. Neill, Bellevue, Londres.

Everhart, E. 1985. An efficient integrator that uses Gauss-Radau spacings. Dynamics of comets: Their origin and evolution, Carusi y Valsecchi (eds.): 185-202.

Feeley, T. & J. Speyer. 1993. Approximate optimal guidance for the advanced launch system. NASA Contractor Report 4568.

Garfinkel, B. 1959. The orbit of a satellite of an oblate planet. Astron. J. 64 (1274): 353-367.

Goldstein, H. 1963. Mecánica clásica. Aguilar Ediciones, Madrid.

Irigoyen, R. & C. Simó. 1993. Non-integrability of the J2 problem. Cel. Mech. & Dyn. Astron. 55 (3): 281-287.

Kaula, W. 1966. Theory of satellite geodesy. Blaisdell Publ. Comp., Waltham, Massachusetts.

Kinoshita, H. & H. Nakai. 1989. Numerical integration methods in dynamical astronomy. Cel. Mech. & Dyn. Astron. 45 (3): 231-244.

Kinoshita, H. & H. Yoshida. 1991. Symplectic integrators and their application to dynamical astronomy. Cel. Mech. & Dyn. Astron. 50 (1): 59-71.

Kosai, Y. 1959. The motion of close Earth satellites. Astron. J. 64 (1274): 367-377.

McCuskey, S. 1963. Introduction to celestial mechanics. Addison-Wesley, Reading, Massachusetts.

Seidelmann, P. K. 1992. Explanatory supplement to the astronomical almanac. University Science Books, Mill Valley, California.

Standish, E. 1982. The JPL planetary ephemerides. Cel. Mech. & Dyn. Astron. 26 (2): 181-186.

Stiefel, E. & G. Scheifele. 1971. Linear and regular celestial mechanics. Springer-Verlag, Berlin.

Teukolsky, S. 1992. Numerical recipes in Fortran. Cambridge Univ. Press, New York.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.