ANALYTICAL INTEGRATION OF MOVEMENT EQUATIONS OF A SATELLITE PERTURBED BY SECTORIAL HARMONICS J22 AND K22 IN TERMS OF THE KS TRANSFORMATION
PDF (Español (España))

How to Cite

Portilla B., J. G. (2024). ANALYTICAL INTEGRATION OF MOVEMENT EQUATIONS OF A SATELLITE PERTURBED BY SECTORIAL HARMONICS J22 AND K22 IN TERMS OF THE KS TRANSFORMATION. Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 20(76), 15–23. https://doi.org/10.18257/raccefyn.20(76).1996.3015

Downloads

Download data is not yet available.

Métricas Alternativas


Dimensions

Abstract

Starting from the equations of perturbation of the KS-transformation, analytical integration of equations describing the motion of a perturbed satellite by sectorial harmonic J22 and K22 is developed. The series expansion is carried out to fourth power of the eccentricity. The symmetry between the differential equations allows integrate only two of the nine equations. A comparison between the theory and the direct numerical integration of the equations of movement is presented.

https://doi.org/10.18257/raccefyn.20(76).1996.3015

Keywords

Celestial mechanics | artificial satellites | potential
PDF (Español (España))

References

Blitzer, L., Kang, G. & B. McGuire. 1963. The perturbed motion of 24-hour satellites due to equatorial ellipticity. J. Geophys. Res. 68: 950-952.

Brouwer, D. 1959. Solution of the problem of artificial satellite theory without drag. Astron. J. 64 (1274): 378-397.

Cook, G. E. 1963. Perturbations of satellite orbits by tesseral harmonics in the Earth's gravitational potential. Planet. Space Sci. 11: 797-815.

Everhart, E. 1985. An efficient integrator that uses Gauss-Radau spacings. Dynamics of Comets: Their Origin and Evolution, Carusi y Valsecchi (eds.): 185-202.

Kosai, Y. 1959. The motion of close Earth satellites. Astron. J. 64 (1274): 367-377.

Meyer, K., Buglia, J. & P. Desai. 1994. Lifetimes of lunar satellite orbits. NASA Technical Paper 3394, March 1994.

Morando, M. B. 1963. Orbites de résonance des satellites de 24 h. Bull. Astron. 24: 47-67.

Portilla, J. G. 1994. Términos de período corto en el movimiento de un satélite artificial bajo la acción de los armónicos 1s y 1s del potencial terrestre, integración analítica mediante el uso de la transformación KS. Rev. Acad. Colomb. Cienc. 19 (72): 317-335.

Seidelmann, P. K. 1992. Explanatory Supplement to the Astronomical Almanac, University Science Books, Mill Valley, California.

Sharma, R. K. 1989. Analytical approach using KS elements to short-term orbit predictions including 1s. Cel. Mech. & Dyn. Astron. 46 (4): 321-333.

Sharma, R. K. 1993. Analytical short-term orbit predictions with 1s and 1s in terms of KS elements. Cel. Mech. & Dyn. Astron. 56 (4): 505-521.

Stiefel, E. & G. Scheifele. 1971. Linear and regular celestial mechanics. Springer-Verlag, Berlin.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.