STRANGE ATRACTORS (CAOS) IN THE HYDROCLIMATOLOGY OF COLOMBIA?
PDF (Español (España))

How to Cite

Poveda Jaramillo, G. (2024). STRANGE ATRACTORS (CAOS) IN THE HYDROCLIMATOLOGY OF COLOMBIA?. Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 21(81), 431–444. https://doi.org/10.18257/raccefyn.21(81).1997.2995

Downloads

Download data is not yet available.

Métricas Alternativas


Dimensions

Abstract

lnterannual hydro-climatology of Colombia is strongly influenced by extreme phases of ENSO, a phenomenon exhibiting many features of chaotic non-linear system. The possible chaotic nature of Colombian hydrology is examined by using time series of monthly precipitation at Bogotá (1866-1992) and Medellín (1908-1995), and average streamflows of the Magdalena river at Puerto Berrío. The power spectrum, the Haussdorf-Besikovich (fractal) dimension, the correlation dimension, and the largest Lyapunov exponent are estimated for the time series. Ideas of hydrologic forecasting and predictability are discussed in the context of nonlinear dynamical systems cxhibitic chaotic behavior.

https://doi.org/10.18257/raccefyn.21(81).1997.2995

Keywords

Hidrology | ENSO | Chaos theory | Colombia
PDF (Español (España))

References

Albano, A. M., A. Passamante, & M. E. Farrell. 1991. Using higher-order correlations to define an embedding window, Physica D, 54, 85-97.

Barnet, T. P. The interaction of multiple time scales in the tropical climate system, J. Climate, 4, 269-285.

Betancur, C. M., L. F. Sánchez, & G. Poveda. 1993. Estimación de la escala de fluctuación en series de lluvias y caudales en Colombia, Revista Atmósfera, No. 20, 1993.

Casdagli, M., 1989. Nonlinear prediction of chaotic time series, Physica D, 35, 335-356.

Chang, P., B. Wang, T. Li, & L. Ji. Interactions between the seasonal cycle and ENSO-frequency entrainment and chaos in a coupled atmosphere-ocean model, Geophys. Res. Lett., 21, No. 25, 2817-2820, 1994.

Cutler, C. D., 1994. A theory of correlation dimension for stationary time series, Phil. Trans. R. Soc. Lond. A, 348, 343-355.

Diaz, H. F., & V. Markgraf, (eds.). 1993. El Niño. Historical and paleoclimatic aspects of the Southern Oscillation. Cambridge University Press. 476 p.

Enfield, D. B., 1989. El Niño, past and present, Rev. Geophys., 27, 159-187.

Essex, T. L., & Nerenberg, M. A. H., 1991. Comment on Deterministic chaos: The science and the fiction by D. Ruelle, Proc. R. Soc. Lond. A, 435, 287-292.

Essex, T. L., T. Lookman, & M. A. Nerenberg. 1987. The climate attractor over short time scales, Nature, 326, 64-66.

Fraederich, K., 1986. Estimating the dimensions of weather and climate attractors, Jour. Atmos. Sci., 43, 419-432.

Glantz, M., R. Katz & N. Nicholls, (eds.). 1991. Teleconnections linking worldwide climate anomalies. Cambridge University Press. 535 p.

Grassberger, P., 1986. Do climatic attractors exist?, Nature, 323, 609-612.

Hense, A. 1987. On the possible existence of a strange attractor for the Southern Oscillation, Beitr. Phys. Atmosph., 60, 34-47.

Hentschel, H. G. E., & I. Procaccia. 1983. The infinite number of generalized dimensions of fractals and strange attractors, Physica D, 8, 435-444.

Jin, F.-F., J. D. Neelin, & M. Ghil. 1994. El Niño on the Devil's Staircase: Annual subharmonic steps to chaos, Science, 264, 70-72.

Kostelich, E. J., & D. P. Lathrop. 1994. Time series prediction by using the method of analogues, In: Time Series Prediction: Forecasting the Future and Understanding the Past (Eds. A. S. Weigend and N. A. Gershenfeld), SFI Studies in the Science of Complexity, Proc. Vol. XV, Addison-Wesley, 283-295.

Landa, P. S., & V. I. Chetverikov. 1988. On the evaluation of the maximum Lyapunov exponent from a single experimental time series, Soviet Phys. Tech. Phys. 33, 236-268.

Lewis, P. A. W., B. K. Ray, & J. G. Stevens. 1994. Modeling time series by using Multivariate Adaptive Regression Splines (MARS), In: Time Series Prediction: Forecasting the Future and Understanding the Past (Eds. A. S. Weigend and N. A. Gershenfeld), SFI Studies in the Science of Complexity, Proc. Vol. XV, Addison-Wesley, 297-318.

Lorenz, E. N., 1963. Deterministic nonperiodic flow, J. Atmos. Sci. 20, 130-141.

Lorenz, E. N., 1991. Dimension of weather and climate attractors, Nature, 353, 241-244.

Mandelbrot, B. B., 1982. The Fractal Geometry of Nature, Freeman and Co., San Francisco.

Mesa, O. J., G. Poveda, & L. F. Carvajal. 1997. Una Introducción al Clima de Colombia. Imprenta Universidad Nacional, Bogotá, 1997.

Münnich, M., M. A. Cane, & S. E. Zebiak. 1991. A study of the self-excited oscillations in a tropical ocean-atmosphere system. Part II: Nonlinear cases, J. Atmos. Sci., 48, 1238-1248.

Nicolis, C., & G. Nicolis. 1984. Is there a climatic attractor?, Nature, 311, 529-532.

Nicolis, C.,. 1986. Reconstruction of the dynamics of the climatic system from time-series data, Proc. Natl. Acad. Sci. USA, 83, 536-540.

Osborne, A. R., & A. Provenzale. 1989. Finite correlation dimension for stochastic systems with power law spectra, Physica D, 35, 357-381.

Philander, S. G., 1990. El Niño, La Niña, and the Southern Oscillation, Academic Press, San Diego, USA, 293 p.

Pool, R., 1989. Is something strange about the weather?, Science, 243, 1290-1293.

Porporato, A., & L. Ridolfi. Nonlinear analysis of river flow time sequences, Water Res. Res., 33, 1353-1367.

Poveda, G., Funciones Ortogonales Empíricas en el análisis de la relación entre los caudales medios en Colombia y las temperaturas de los océanos Pacífico y Atlántico, Memorias del XVI Congreso Latinoamericano de Hidráulica e Hidrología, IAHR, Santiago de Chile, Vol. 4, 131-144, 1994.

Poveda, G., & O. Mesa. 1995. The Relationship between ENSO and the hydrology of tropical South America. The case of Colombia. Proceedings of the Fifteenth Annual American Geophysical Union Hydrology Days, 227-236, Atherton, CA, USA, Hydrology Days Publications.

Poveda, G., 1997. Feedbacks between hydrological processes in tropical South America and large scale oceanic-atmospheric phenomena, J. Climate, Vol. 10.

Poveda, G., & C. Puente. 1993. Strange attractors in the atmospheric boundary layer turbulence, Boundary-Layer Meteorology, Vol. 64, No. 1-2, 175-197.

Press, W. H., B. P. Flannery, S. A. Teukolsky, & W. T. Vetterling. 1986. Numerical Recipes, The Art of Scientific Computing, Cambridge University Press, 818 p.

Read, P. L., 1991. Applications of chaos to meteorology and climate, In: Chaos and related non-linear phenomena, Ed. T. Mullin, Oxford University Press.

Rodríguez-Iturbe, I., B. Febres de Power, M. B. Sharifi, & K. P. Georgakakos. 1989. Chaos in rainfall, Water Res. Res., 25, 1667-1675.

Ruelle, D., 1990. Deterministic chaos: The science and the fiction, Proc. R. Soc. Lond. A, 427, 241-248.

Sauer, T., 1994. Time series prediction by using delay coordinate embedding, In: Time Series Prediction: Forecasting the Future and Understanding the Past (Eds. A. S. Weigend and N. A. Gershenfeld), SFI Studies in Science of Complexity, Proc. Vol. XV, Addison-Wesley, 175-193.

Sauer, T., & J. A. Yorke. 1993. How many delay coordinates do you need? International Journal of Bifurcation and Chaos, 3, 737-743.

Takens, F., 1981. Detecting strange attractors in turbulence. In: Dynamical Systems and Turbulence. Lecture Notes in Mathematics. No. 898, 366-381, Springer-Verlag.

Theiler, J., 1987. Efficient algorithm for estimating the correlation dimension from a set of discrete points, Phys. Rev. A, 36, 4456-4462.

Tsonis, A. A., & J. B. Elsner. 1989. Chaos, strange attractors and weather, Bull. Amer. Meteor. Soc. 70, 14-23.

Tziperman, E., L. Stone, M. Cane, & H. Jarosh. 1994. El Niño chaos: overlapping of resonances between the seasonal cycle and the Pacific ocean-atmosphere oscillator, Science, 264, 72-74.

Vallis, G. K., 1986. El Niño: chaotic dynamical system?, Science, 232, 243-245.

Vallis, G. K., 1988. Conceptual models of El Niño and the Southern Oscillation, Journal of Geophysical Research, 93, 13979-13991.

Wayland, R., D. Pickett, D. Bromley, & A. Passamante. 1993. Measuring the predictability of noisy recurrent time series, International Journal of Bifurcation and Chaos, 3, 797-802.

Wolf, A., J. B. Swift, H. L. Swinney, & J. A. Vastano. 1985. Determining Lyapunov exponents from a time series, Physica D, 16, 286-317.

Webster, P. J., & S. Yang. 1992. Monsoon and ENSO: Selectively interactive systems, Q. J. R. Meteor. Soc., 118, 877-926.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.