THE PARALLEL POSTULATE
PDF (Español (España))

How to Cite

Moreno-Armella, L. (2024). THE PARALLEL POSTULATE. Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 22(84), 393–405. https://doi.org/10.18257/raccefyn.22(84).1998.2932

Downloads

Download data is not yet available.

Métricas Alternativas


Dimensions

Abstract

The path followed to construct a theoretical science, from Euclid to Hilbert, is described. The Aristotelian philosophical intentions to build demostrative sciences, lead necessarily to the exploration of propositions as building blocks of an axiomatic system for geometry, which in turn allowed mathematicians pass from ontological aspects to logical ones. In this process, the attempts to prove the Fifth Postulate of Euclidean geometry, had a crucial role since at the end they lead from "Euclidean truth" to "Hilbertian consistency".

https://doi.org/10.18257/raccefyn.22(84).1998.2932

Keywords

Mathematics | history | philosophy | non-Euclidean geometries | epistemology
PDF (Español (España))

References

Euclides, Elementos de Euclides, Gredos, Madrid, 1991.

Hilbert, D., Fundamentos de la Geometría, C.S.I.C., Madrid, 1952.

Courant, R., & Robbins, H., ¿Qué es la Matemática?, Aguilar, Madrid, 1962. p. 405.

Whiteside, T., Mathematical Papers of I. Newton, Cambridge University Press, 1967.

Bonola, R., Non-Euclidean Geometry, Dover, New York, 1955.

Lobachévsky, Nuovi Principii della Geometría, Lombardo-Radice (ed.), Boringhieri, 1974.

Torretti, R., Philosophy of Geometry from Riemann to Poincaré, Reidel, 1978.

Piaget, J., & García, R., Psicogénesis e Historia de la Ciencia, Siglo XXI, 1982.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.