Abstract
The path followed to construct a theoretical science, from Euclid to Hilbert, is described. The Aristotelian philosophical intentions to build demostrative sciences, lead necessarily to the exploration of propositions as building blocks of an axiomatic system for geometry, which in turn allowed mathematicians pass from ontological aspects to logical ones. In this process, the attempts to prove the Fifth Postulate of Euclidean geometry, had a crucial role since at the end they lead from "Euclidean truth" to "Hilbertian consistency".
Keywords
References
Euclides, Elementos de Euclides, Gredos, Madrid, 1991.
Hilbert, D., Fundamentos de la Geometría, C.S.I.C., Madrid, 1952.
Courant, R., & Robbins, H., ¿Qué es la Matemática?, Aguilar, Madrid, 1962. p. 405.
Whiteside, T., Mathematical Papers of I. Newton, Cambridge University Press, 1967.
Bonola, R., Non-Euclidean Geometry, Dover, New York, 1955.
Lobachévsky, Nuovi Principii della Geometría, Lombardo-Radice (ed.), Boringhieri, 1974.
Torretti, R., Philosophy of Geometry from Riemann to Poincaré, Reidel, 1978.
Piaget, J., & García, R., Psicogénesis e Historia de la Ciencia, Siglo XXI, 1982.
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.