Quantum operator for non-paraxial single photon interference
PDF

Supplementary Files

Supplementary information

How to Cite

Castañeda-Sepúlveda, R. E., & Hurtado, C. (2024). Quantum operator for non-paraxial single photon interference. Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 48(189), 768–783. https://doi.org/10.18257/raccefyn.2863

Downloads

Download data is not yet available.

Métricas Alternativas


Dimensions

Abstract

Interference in optics has been described as a result of the superposition of light waves in ordinary space. However, this phenomenological description does not seem to fit non-paraxial single-photon interference in ordinary space due to the corpuscular nature of photons and the fact that only one photon moves in the setup at each time. A quantum interference operator, deduced from the exact (non-paraxial) mathematical model, indicates that the spatial morphology of interference is independent of the presence of photons in the setup and remains unchanged in their absence. This suggests a new interpretation of interference in terms of the photon confinement in geometric states of ordinary space. Here, we discuss the physical and phenomenological implications of this new interpretation.

https://doi.org/10.18257/raccefyn.2863

Keywords

States of space | Geometric potential | Confinement | Spatially structured wells | Vacuum | Interference operator
PDF

References

Born, M. & Wolf, E. (1993). Principles of Optics, 6 th ed. Pergamon Press.

Bohr, N. (1935). Can quantum-mechanical description of physical reality be considered complete? Physical Review, 48, 696-702.

Castañeda, R., Moreno, J., Colorado, D., Laverde, J. (2020). 3D non-paraxial kernel for two-point correlation modelling in optical and quantum interference at the micro and nanoscales. Physica Scripta, 95, 065502.

Castañeda, R. (2022). Confinement and spatial entanglement: phenomenology of a new interference principle. Revista de la Academia Colombiana de Ciencias Exactas Físicas y Naturales, 46(181), 902-919.

Castañeda, R., Bedoya, P., Hurtado, C. (2023). Quantum formalism of interference as confinement in spatially structured Lorentzian wells. Journal of Physics A: Mathematical and Theoretical, 56, 045302.

De Martini, F., Denardo, G., Zeilinger, A. (1994). Proceedings of the Adriatico Workshop on Quantum Interferometry. World Scientific.

Hessmo, B., Usachev, P., Heydari, H., Bjork, G. (2003). An experimental demonstration of single photon nonlocality. arXiv: quant-ph / 0311144v1.

Jones, S. J. & Wiseman, H. M. (2011). Nonlocality of a single photon: paths to an EPR-steering experiment. arXiv: 1102.5369v3 [quant-ph].

Mandel, L. & Wolf, E. (1995). Optical Coherence and Quantum Optics. Cambridge University Press.

Marshman, E. & Singh, C. (2017). Investigating and improving student understanding of quantum mechanics in the context of single photon interference. Physical Review Physics Education Research, 13(1), 010117.

Mérolla, J-M., Mazurenko, Y., Goedgebuer, J-P., Rhodes, W.T. (1999). Single-Photon Interference in Sidebands of Phase-Modulated Light for Quantum Cryptography. Physical Review Letters, 82, 1656.

Rueckne, W. & Titcomb, P. (1996). A lecture demonstration of single photon interference. American Journal of Physics, 64(2), 184-188.

Rueckne, W. & Peidle, J. (2013). Young’s double-slit experiment with single photons and quantum eraser. American Journal of Physics, 81(12), 951-958.

Tang, J. & Hu, Z. B. (2022). Analysis of single-photon self-interference in Young’s double-slit experiments. Results in Optics, 9, 100281.

Saleh, B.E.A. & Teich, M.C. (2019). Fundamentals of Photonics 3 rd ed. Wiley.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2024 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales