Abstract
The electronic applications of superconductivity are based on the Josephson effect. The fabrication of Josephson devices based on high-temperature superconductors (HT) offers high working temperatures and efficiency. Nevertheless, the complex characteristics of these materials present a wide range of challenges in the development of high-quality devices based on these compounds. In this paper, we describe the main features of the Josephson effect and the different systems developed to fabricate Josephson junctions with HT. We have focused on Grain Boundary Josephson Junctions, demonstrating how to enhance the superconducting properties of samples by doping YBa2Cu3O7−δ with silver. Finally, we describe the fabrication and characterization process for Step-Stack Josephson Junctions based on Bi2Sr2CaCo2O8+δ, which exhibit high values of the figure of merit.
Keywords
References
Ambegaokar, V., & Baratoff, A. 1963. Tunneling between superconductors. Phys. Rev. Lett. 10 (11): 486-489
Anderson, P. W., & Rowell, J. M. 1963. Phys. Rev. Lett. 10: 230
Balsamo, E. P., Paterno, G., Barone, A., Russo, M., & Vaglio, R. 1976. phys. stat. sol. (a) 35: K 173-175
Bardeen, J., Cooper, L. N., & Schrieffer, J. R. 1957. Phys. Rev. 108: 1175
Barone, A., & Paterno, G. 1982. Physics and Applications of the Josephson Effect. Ed. John Wiley & Sons, Inc., New York. pp. 13, 122
Bednorz, J. G., & Müller, K. A. 1986. Z. Phys. B 64: 189
Bolaños, G., den Ouden, G., Chacón, M., Lopera, W., Gómez, M. E., Pulzara, A., Heiras, J., & Prieto, P. 1997. Grain Boundary Junctions with Ag-doped YBa2Cu3O7-δ epitaxial thin films. Physica C 282-287: 2419-2420
Bolaños, G., Baca, E., Osorio, J., & Prieto, P. 2000. Improvement in the properties of Ag-doped YBa2Cu3O7-δ grain boundary Josephson junctions. phys. stat. sol. (b) 220 (1): 517-520
Clarke, J. 1994. SQUIDs. Sci. American 271 (2): 46-53
Crommie, M. F., & Zettl, A. 1991. Phys. Rev. B 43 (1): 408-412
Faley, M. L., Poppe, U., Jia, C. L., Glyantsev, V. N., Siegel, M., & Urban, K. 1994. Physica C 235-240: 591
Finnegan, T. F., Denenstein, A., & Langenberg, D. N. 1971. Phys. Rev. B 4: 1487
Josephson, B. D. 1962. Phys. Lett. 1: 251
Kleiner, R., Steinmeyer, F., Kunkel, G., & Müller, P. 1992. Intrinsic Josephson effects in Bi2Sr2CaCu2O8+δ single crystals. Phys. Rev. Lett. 68: 2394-2397
Lopera, W., Baca, E., Gómez, M. E., Prieto, P., Poppe, U., & Evers, W. 1999. Properties of Bi-2212/Bi-22Y2 step-stack Josephson junctions. IEEE Trans. Appl. Supercond. 9 (2): 4288-4291
Lopera, W., Giratá, D., Osorio, J., & Prieto, P. 2000. Structural and electrical properties of grain boundary Josephson junctions based on Bi2Sr2CaCu2O8+δ thin films. phys. stat. sol. (b) 220 (1): 483-487
Matisoo, J. 1980. The superconducting computer. Sci. American 242 (5): 50-65
McCumber, D. E. 1968. J. Appl. Phys. 39 (6): 2503
Merzbacher, E. 1961. Quantum Mechanics. Ed. Wiley, New York
Preis, Ch., Sardar, M., & Keller, J. 1997. Parametric amplification of radiation by the intrinsic Josephson effect. J. Appl. Phys. 81 (1): 315-323
Schlenga, K., Hechtfischer, G., Walkenhorst, W., Möller, P., Régi, F. X., Savary, H., Schneck, J., Veith, M., Brodkorb, W., & Steinbeiss, E. 1995. Intrinsic Josephson junctions in high-Tc superconductors as high-frequency sources. IEEE Trans. Appl. Supercond. 5 (2)
Shapiro, S. 1963. Phys. Rev. Lett. 11: 80
Shapiro, S., Janus, A. R., & Holly, S. 1964. Rev. Mod. Phys. 36: 223
Van Duzer, T., & Turner, C. W. 1981. Principles of Superconductive Devices and Circuits. Ed. Elsevier, New York. p. 184
Vivas, P., Chacón, M., Gómez, M., & Prieto, P. 2000. Characterization of Josephson junctions for the elaboration of High-Tc SQUIDs. phys. stat. sol. (b) 220 (1): 503-507
Walkenhorst, W., Hechtfischer, G., Schützer, S., Kleiner, R., & Müller, P. 1997. Probing the collective Josephson plasma resonance in Bi2Sr2CaCu2O8+δ by W-band-mixing experiments. Phys. Rev. B 56 (13): 8396-8403
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.