Abstract
We presenta detailed description of the analytical solution dueto Damour & Deruelle in oruer to resolve the differential equation of the post-Newtonian two body problem. It 's shown the re lationship between the constants of motion and the so called post-Newtonian orbital elements, which are reduced to the classical orbital elements when e ➔ oo. The Sun-Mercury system is used to study the accuracy of the solution. The results are compared with those obtained through a direct numerical integration of the equations of motion. It's found that the D&D solution describes, with a high degree of accuracy, the motion of Mercury compared with that obtained with the direct numerical integration.
References
Brouwer, D., Clemence, G. 1961. Methods of Celestial Mechanics, Academic Press, New York.
Brumberg, V. 1991. Essential Relativistic Celestial Mechanics. Adam Hilger, Bristol.
Calura, M., Fortini, P., Montanari, E. 1997. Post-Newtonian Lagrangian Planetary Equations. Phys. Review D, 56: 4782-4788.
Damour, T. 1987. The Problem of Motion in Newtonian and Einstein Gravity, en Three Hundred Years of Gravitation, Hawking S. y Israel W. (eds.) Cambridge University Press, Cambridge.
Damour, T., Deruelle, N. 1985. General Relativistic Celestial Mechanics I. The post-Newtonian Motion. Ann. Inst. Henri Poincaré, 43: 107-132.
Everhart, E. 1985. An Efficient Integrator that Uses Gauss-Radau Spacings, en Dynamics of Comets, Their Origin and Evolution, Carusi and Valsecchi (eds.), Reidel Pub. Co., 185-202.
Haugan, M. 1985. Post-Newtonian Arrival-Time Analysis for a Pulsar in a Binary System. Ap. J. 296: 1-12.
Lestrade, J.F. 1981. Perturbations relativistes des orbites planétaires dans la métrique de Schwarzschild généralisée à trois paramètres. Cas de Mercure. Astron. Astrophys. 100: 143-155.
Portilla J.G. 2001. Elementos de astronomía de posición, Unibiblos, Bogotá.
Richardson, D.L., Kelly, T.J. 1988. Two-Body Motion in the Post-Newtonian Approximation. Cel. Mech., 43: 193-210.
Rubincam, D.P. 1977. General Relativity and Satellite Orbits: the Motion of a Test Particle in the Schwarzschild Metric. Cel. Mech. 15: 21-33.
Soffel, M., Ruder, H., Schneider, M. 1987. The Two Body Problem in the (Truncated) PPN-Theory. Cel. Mech. 40: 77-85.
Soffel, M. 1989. Relativity in Astrometry, Celestial Mechanics and Geodesy, Springer-Verlag, Heidelberg.
Taylor, J.H., Weisberg, J.M. 1989. Further Experimental Tests of Relativistic Gravity Using the Binary Pulsar PSR 1913 + 16. Ap. J. 345: 434-450.
Wagoner, R., Will, C. 1976. Post-Newtonian Gravitational Radiation from Orbiting Point Masses. Ap. J. 210: 764-775.
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.