Evolutionary history of the group formerly known as protists using a phylogenomics approach
PDF

How to Cite

Restrepo, S., Enciso, J., Tabima, E., & Riaño-Pachón, D. M. (2016). Evolutionary history of the group formerly known as protists using a phylogenomics approach. Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 40(154), 147–160. https://doi.org/10.18257/raccefyn.277

Downloads

Download data is not yet available.

Métricas Alternativas


Dimensions

Abstract

The lack of organisation of monophyletic lineages in the phylogeny and taxonomy of the group formerly known as protists has precluded the understanding of the group’s evolutionary history and trait comparison among members of the group. We used a phylogenomic approach to establish phylogenetic hypotheses of this group of organisms. We used an automatic orthologous clustering (OrthoMCL)-based strategy to recover 72 clusters of orthologues from 73 eukaryotic species. A maximum likelihood tree was inferred from the supermatrix. Overall, we obtained consistent inferences with previous published ones, but some unexpected phylogenetic relationships were poorly supported. Despite the large quantity of genes from the Opisthokonta groups, this clade was recovered as polyphyletic. We failed to recover a monophyletic Excavata group, most likely because of longbranch attraction artefacts. A second dataset was constructed after removing the fast-evolving/saturated sites, and a Shimodaira-Hasegawa test was performed to verify whether our data allowed us to reject relationships in previous hypotheses. The results of these tests suggested that the competing tree topologies were not significantly better than our recovered topologies. Novel relationships were shown inside the Opisthokonta, for two species, Thecamonas trahens and Capsaspora owczarzaki. Additionally, some controversial phylogenetic positions among several eukaryotic groups were found. We discuss the relative positions of the Alveolata and Stramenopila groups, the latter being of special interest in our research group. © 2016. Acad. Colomb. Cienc. Ex. Fis. Nat. All rights reserved.

https://doi.org/10.18257/raccefyn.277
PDF

References

Abascal, F., Zardoya, R., and Posada, D. (2005). ProtTest: selection of best-fit models of protein evolution. Bioinformatics, 21: 2104-2105.

Adl, S.M., Simpson, A.G., Farmer, M.A., Andersen, R.A., Anderson, O.R., Barta, J.R.,et al. (2005). The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. J Eukaryot Microbiol., 52: 399-451.

Adl, S.M., Leander, B.S., Simpson, A.G., Archibald, J.M., Anderson, O.R., Bass, D., et al. (2007). Diversity, nomen-clature, and taxonomy of protists. Syst Biol. 56: 684-689.

Adl, S.M., Simpson, A.G., Lane, C.E., Lukeš, J., Bass, D., Bowser, S.S.,et al. (2012). The Revised Classification of Eukaryotes. J. Eukaryot. Microbiol., 59: 429-493

Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z., Miller, W.,et al. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res., 25: 3389-3402.

Baurain, D., Brinkmann, H., Petersen, J., Rodríguez-Ezpeleta, N., Stechmann, A., Demoulin, V., et al. (2010). Phylogenomic evidence for separate acquisition of plastids in cryptophytes, haptophytes, and stramenopiles. Mol Biol Evol., 27: 1698-1709.

Bodyl, A., Stiller, J.W., and Mackiewicz, P. (2009). Chromalveolate plastids: direct descent or multiple endosymbioses? Trends Ecol Evol., 24: 119-121; author reply 121-112.

Brinkmann, H., van der Giezen, M., Zhou, Y., Poncelin de Raucourt, G., Philippe, H. (2005). An empirical assessment of long-branch attraction artefacts in deep eukaryotic phylogenomics. Syst Biol. 54: 743-757.

Burki, F., Inagaki, Y., Bråte, J., Archibald, J.M., Keeling, P.J., Cavalier-Smith, T., et al. (2009). Large-scale phylogenomic analyses reveal that two enigmatic protislineages, telonemia and centroheliozoa, are related to photo-synthetic hromalveolates. Genome Biol Evol., 1: 231-238.

Castresana, J. (2000). Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol., 17: 540-552.

Cavalier-Smith, T., & Chao, E.E. (2006). Phylogeny and megasystematics of phagotrophic heterokonts (kingdom Chromista). J Mol Evol, 62: 388-420.

Cavalier-Smith, T., & Chao, E.E. (2010). Phylogeny and evolution of apusomonadida (protozoa: apusozoa): new genera and species. Protist, 161: 549-576.

Chen, F., Mackey, A.J., Vermunt, J.K., and Roos, D.S. (2007). Assessing performance of orthology detection strategies applied to eukaryotic genomes. PLoS ONE, 2: e383.Corradi, N., & Keeling, P.J. (2009). Microsporidia: a journey through radical taxonomical revisions. Fungal Biol Rev., 23: 1-8.

Hampl, V., Hug, L., Leigh, J.W., Dacks, J.B., Lang, B.F., Simpson, A.G., et al. (2009). Phylogenomic analyses support the monophyly of Excavata and resolve relationships among eukaryotic “supergroups”. Proc Natl Acad Sci U S A., 106: 3859-3864.

Harper JT., & Keeling, P.J. (2003). Nucleus-encoded, plastid-targeted glyceraldehyde-3-phosphate dehydrogenase (GAPDH) indicates a single origin for chromalveolate plastids. Mol Biol Evol., 20: 1730-1735.

Hess, P.N., & De Moraes Russo, C.A. (2007). An empirical test of the midpoint rooting method. Biol J Linn Soc Lond., 92: 669-674.

Katoh, K., Kuma, K., Toh, H., and Miyata, T. (2005). MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res., 33: 511-518.

Keeling, P.J., Burger, G., Durnford, D.G., Lang, B.F., Lee, R.W., Pearlman, R.E., et al. (2005). The tree of eukaryotes. Trends Ecol Evol. 20: 670-676.

Kuck, P., & Meusemann, K. (2010). FASconCAT: Convenient handling of data matrices. Mol Phylogenet Evol., 56: 1115-1118.

Leigh, J.W., Lapointe, F.J., Lopez, P., and Bapteste, E. (2011). Evaluating phylogenetic congruence in the post-genomic era. Genome Biol Evol., 3: 571-587.

Li, L., Stoeckert, C.J., Jr., Roos, D.S. (2003). OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res., 13: 2178-2189.

Mi, H., Lazareva-Ulitsky, B., Loo, R., Kejariwal, A., Vandergriff, J., Rabkin, S., et al. (2005). The PANTHER database of protein families, subfamilies, functions and pathways. Nucleic Acids Res., 33: D284-288.

Nozaki, H., Maruyama, S., Matsuzaki, M., Nakada, T., Kato, S., and Misawa, K. (2009). Phylogenetic positions of Glaucophyta, green plants (Archaeplastida) and Haptophyta (Chromalveolata) as deduced from slowly evolving nuclear genes. Mol Phylogenet Evol., 53: 872-880.

Ocana, K.A., & Davila, A.M. (2011). Phylogenomics-based reconstruction of protozoan species tree. Evol Bioinform Online, 7: 107-121.

Parfrey, L.W., Grant, J., Tekle, Y.I., Lasek-Nesselquist, E., Morrison, H.G., Sogin, M.L.,et al. (2010). Broadly sampled multigene analyses yield a well-resolved eukaryotic tree of life. Syst Biol., 59: 518-533.

Philippe, H., Lopez, P., Brinkmann, H., Budin, K., Germot, A., Laurent, J., et al. (2000). Early-branching or fast-evolving eukaryotes? An answer based on slowly evolving positions. Proc Biol Sci., 267: 1213-1221.

Price, M.N., Dehal, P.S., and Arkin, A.P. (2009). FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol., 26: 1641-1650.

Ruiz-Trillo, I., Burger, G., Holland, P.W., King, N., Lang, B.F., Roger, A.J., et al. (2007). The origins of multicellularity: a multi-taxon genome initiative. Trends Genet., 23: 113-118.

Sebe-Pedros, A., de Mendoza, A., Lang, B.F., Degnan, B.M., Ruiz-Trillo, I. (2011). Unexpected repertoire of metazoan transcription factors in the unicellular holozoan Capsaspora owczarzaki. Mol Biol Evol., 28: 1241-1254.

Shimodaira, H., Hasegawa, M. (1999). Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Mol Biol Evol., 16: 1114.

Simpson, A.G.B., & Roger, A.J. (2004). The real ‘kingdoms’ of eukaryotes. Cambridge, MA: Cell Press

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2016 Journal of the Colombian Academy of Exact, Physical and Natural Sciences