Abstract
We descrioe a method that links Hilbert-space and phase-space operators. This procedure use Weyl's operator with complex parameters of position Q and momentum Pand a function S(Q, P, t) related with the classical action. The phase-space Hamiltonian of the system is expanded as a sum of differential operators depending of Planck's constant h. This allows to identify the leading quantum contribution and define a complex classical dynamics. In the limit h -+ O, the Schrodinger equation is transformed in a Liouville's equation for the phase-space wavefunction. The article ends with the application of the method to study the dynamics of a quartic oscillator.
Keywords
References
M. Hillery, R. F. O'Connell, M. Scully y E. P. Wign er, Phys. Rep. 106, 121 (1984)
H. Lee, Phys. Rep. 259, 147 (1995)
D. Campos, Momento 6, 5 (1992)
D, Campos, Momento 9, 3 (1995)
K. B. Moller, T. Jorgensen y G. Torres-Vega, J. Chem. Phys. 106, 7228 (1997)
D. Campos, J. D. Urbina y C. Viviescas, J. Phys. A: Math. Gen. 33, 6129-6158 (2000)
A. L. Xavier Jr. y Marcus A.M. de Aguiar, Ann. Phys. 252, 458 (1996)
R. Glauber, Phys. Rev. 131, 2766 (1963)
W. Zhang, D. H. Feng y R. Gilmore1 Rev. Mod. Phys. 62, 867 (1990)
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright (c) 2024 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales