Photomorphogenic changes induced by the quality of light in crops
PDF (Español (España))

How to Cite

Casierra-Posada, F., & Peña-Olmos, J. E. (2015). Photomorphogenic changes induced by the quality of light in crops. Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 39, 84–92. https://doi.org/10.18257/raccefyn.276

Downloads

Download data is not yet available.

Métricas Alternativas


Dimensions

Abstract

The most relevant wavelengths in photobiology are the ultraviolet, the visible light, and the infrared. Wavelengths between 300 and 900 nm can affect plants growth and development. Nevertheless, not only light quality can influence plant growth processes. Light properties such as its intensity and duration, as well as climatic factors, are also involved. The development of studies using a single wavelength is very useful to identify the most responsive spectrum in the target application. However, detecting the influences of adjacent spectrum segments in certain applications is difficult because the spectrum is continuous, with no apparent margins between neighboring colors. The agricultural technique of colored covering, although not new, can still be explored in order to clarify aspects concerning its use as light stimulus and the response of plants to it, and thus offer to farmers alternatives of crop management, which will also contribute significantly to the study of plant physiology. Research focused on the influence of light on plant growth is wide; however, it is necessary to discuss its findings so as to offer solid evidence if the aim is to introduce modifications in the light environment as a strategy for crop management. © 2015. Acad. Colomb. Cienc. Ex. Fis. Nat.
https://doi.org/10.18257/raccefyn.276
PDF (Español (España))

References

Anders, K., Essen, L.-O. (2015). The family of phytochrome-like photoreceptors: Diverse, complex and multi-colored, but very useful. Current Opinion in Structural Biology. 35: 7-16.

Ayala-Tafoya, F., Yáñez-Juárez, M.G., Partida-Ruvalcaba, L., Ruiz-Espinosa, F.H., Campos-García, H., Vásquez-Martínez, O., Velázquez-Alcaraz, T. de J., Díaz-Valdés, T. (2015). Producción de pepino en ambientes diferenciados por mallas de sombreo fotoselectivo. Información Técnica Económica Agraria. 111 (1): 3-17.

Casierra-Posada, F. & Rojas, J.F. (2009). Efecto de la exposición del semillero a coberturas de colores sobre el desarrollo y productividad del brócoli (Brassica oleracea var. italica). Agronomía Colombiana. 27 (1): 49-55.

Casierra-Posada, F. & Pinto-Correa, J.R. (2011). Crecimiento de plantas de remolacha (Beta vulgaris L. var. Crosby Egipcia) bajo coberturas de color. Revista Facultad Nacional de Agronomía Medellín. 64 (2): 6081-6091.

Casierra-Posada, F., Peña-Olmos, J.E., Ulrichs, C. (2011a). Crecimiento y eficiencia fotoquímica del fotosistema II en plantas de fresa (Fragaria sp.) afectadas por la calidad de la luz: implicaciones agronómicas. Revista U.D.C.A Actualidad & Divulgación Científica. 14 (2): 43-53.

Casierra-Posada, F., Peña-Olmos, J.E., Vargas-Martínez, A.F.(2011b). Propiedades fisicoquímicas de fresas(Fragariasp) cultivadas bajo filtros fotoselectivos. Revista Facultad Nacional de Agronomía Medellín. 64 (2): 6221-6228.

Casierra-Posada, F., Nieto, P.J., Ulrichs, C. (2012a). Crecimiento, producción y calidad de flores en calas (Zantedeschia aethiopica (L.) K. Spreng) expuestas a diferente calidad de luz. Revista U.D.C.A Actualidad & Divulgación Científica. 15 (1): 97–105.

Casierra-Posada, F., Peña-Olmos, J.E., Ulrichs, C. (2012b). Basic growth analysis in strawberry plants (Fragaria sp.) exposed to different radiation environments. Agronomía Colombiana. 30 (1): 25-33.

Casierra-Posada, F., Peña-Olmos, J.E., Zapata-Casierra, E.2014a. Pigment content in strawberry leaves (Fragariasp.) exposed to different light quality. Revista U.D.C.A Actualidad & Divulgación Científica. 17 (1): 87-94.

Casierra-Posada, F., Zapata-Casierra, E., Chaparro-Chaparro, D.A. (2014b). Growth analysis in chard plants (Beta vulgaris L. Cicla, cv. Pencas Blancas) exposed to different light quality. Agronomía Colombiana. 32 (2): 205-212.

Casierra-Posada, F., Matallana-Díaz, Y.A., & Zapata-Casierra, E. (2014c). Growth of bell pepper plants (Capsicum annuum) affected by coloured covers. Gesunde Pflanzen. 66 (4): 149-155.

Cope, K.R., & Bugbee, B. (2013). Spectral effects of three types of white light-emitting diodes on plant growth and development: Absolute versus relative amounts of blue light. HortScience. 48 (4): 504-509.

Dietzel, L., Gläßer, C., Liebers, M., Hiekel, S., Courtois, F., Czarnecki, O., Schlicke, H., Zubo, Y., Börner, T., Mayer, K., Grimm, B., & Pfannschmidt, T. (2015). Identification of early nuclear target genes of plastidial redox signals that trigger the long-term response of Arabidopsis to light quality shifts. Molecular Plant. 8 (8):1237-1252.

Dong. C., Fu, Y., Liu, G., Liu, H. (2014). Growth, photosynthetic characteristics, antioxidant capacity and biomass yield and quality of wheat (Triticum aestivum L.) exposed to LED light sources with different spectra combinations. Journal of Agronomy and Crop Science. 200 (3): 219–230.

Eskins, K. (1992). Light quality effects on Arabidopsisdevelopment. Red, blue and far-red regulation of flowering and morphology. Physiologia Plantarum. 86: 439-444.

Esteban, R., Morán, J.F., Becerril, J.M., García-Plazaola, J.I. (2015). Versatility of carotenoids: An integrated view on diversity, evolution, functional roles and environmental interactions. Environmental and Experimental Botany. 119: 63-75.

Folta, K.M., & Maruhnich, S.A. (2007). Green light: A signal to slow down or stop. Journal of Experimental Botany. 58: 3099-3111.

Fukuda, N. (2013). Advanced light control technologies in protected horticulture: A review of morphological and physiological responses in plants to light quality and its application. Journal of Developments in Sustainable Agriculture. 8: 32-40.

Guo, B. A., Mu, Y.C., Wang, F., Dong, S. L. (2012). Effect of periodic light color change on the molting frequency and growth of Litopenaeus vannamei. Aquaculture. 362: 67-71.

Higuchi, Y., Sumitomo, K., Oda, A., Shimizu, H., & Hisamatsu, T. (2012). Day light quality affects the night-break response in the short-day plant chrysanthemum, suggesting differential phytochrome-mediated regulation of flowering. Journal of Plant Physiology. 169: 1789-1796.

Hultberg, M., Larsson, H., Bergstrand, K.J., Carlsson, A.S.(2014). Impact of light quality on biomass production and fatty acid content in the microalga Chlorella vulgaris. 159: 465-467.

Jiao, Y., Lau, O.S., Deng, X.W. (2007). Light-regulated transcriptional networks in higher plants. Nature Reviews Genetics. 8: 217-230.

Johkan, M., Shoji, K., Goto, F., Hashida, S., Yoshihara, T. (2010). Blue light-emitting diode light irradiation of seedlings improves seedling quality and growth after transplanting in red leaf lettuce. HortScience. 45: 1809-1814.

Kendrick, R.E. & Weller J.L. (2003). Regulators of growth / Phytochromes and other photoreceptors. Encyclopedia of Applied Plant Sciences. P. 1063-1069.

Kubota, C., Chia, P., Yang, Z., Li, Q. (2012). Application of far-red light emitting diodes in plant production under controlled environments. Acta Horticulturae. 952: 59-66.

Kurepin, L.V., Pharis, R.P., Emery, R.J.N., Reid, D.M., Chinnappa, C.C. (2015). Phenotypic plasticity of sun and shade ecotypes of Stellaria longipes in response to light quality signaling, gibberellins and auxin. Plant Physiology and Biochemistry. 94: 174-180.

Lazo, J.V., & Ascencio, J. (2010). Efecto de diferentes calidades de luz sobre el crecimiento de Cyperus rotundus. Bioagro. 22 (2): 153-158.

Li, H., Tang. C., Zu, Z. (2013). The effects of different light qualities on rapeseed (Brassica napus L.) plantlet growth and morphogenesis in vitro. Scientia Horticulturae. 150: 117-124.

Lin, K.-H., Huang, M.Y., Huang, W.D., Hsu, M.H., Yang, Z.W., Yang, C.M. (2013). The effects of red, blue, and white light-emitting diodes on the growth, development, and edible quality of hydroponically grown lettuce (Lactuca sativa L. var. Capitata). Scientia Horticulturae. 150: 86-91.

Lu, N., Maruo, T., Johkan, M., Hohjo, M., Tsukagoshi, S., Ito, Y., Ichimura, T., Shinohara, Y. (2012). Effects of supplemental lighting with light-emitting diodes (LEDs) on tomato yield and quality of single-truss tomato plants grown at high planting density. Environmental Control in Biology. 50 (1): 63-74.

Liu, M., Xu, Z., Yang, Y. (2011). Effects of different spectral lights on Oncidium PLBs induction, proliferation, and plant regeneration. Plant Cell, Tissue and Organ Culture. 106: 1-10.

Mathews, S. (2010). Evolutionary studies illuminate the structural–functional model of plant phytochromes. The Plant Cell. 22: 4-16.

Matsuda, R., Ohashi-Kaneko, K., Fujiwara, K., Kurata, K.(2008). Effects of blue light deficiency on acclimation of light energy partitioning in PSII and CO2 assimilation capacity to high irradiance in spinach leaves. Plant and Cell Physiology.49: 664-670.

Monteith, J.L. (1972). Solar radiation and productivity in tropical ecosystems. Journal of Applied Ecology. 9: 747-766.

Momokawa, N., Kadono, Y., Kudoh, H. (2011). Effects of light quality on leaf morphogenesis of a heterophyllous amphibious plant, Rotala hippuris. Annals of Botany. 108: 1299-1306.

Nguy-Robertson, A., Suyker, A., Xiangming X. (2015). Modeling gross primary production of maize and soybean croplands using light quality, temperature, water stress, and phenology. Agricultural and Forest Meteorology. 213:160-172.

Olle, M., & Virsile, A. (2013). The effect of light-emitting diode lighting on greenhouse plant growth and quality. Agricultural and Food Science. 22: 223-234.

OuYang, F., Mao, J.-F., Wang, J., Zhang, S., Li, Y. (2015). Transcriptome analysis reveals that red and blue light regulate growth and phytohormone metabolism in Norway spruce [Picea abies (L.) Karst.]. PLoS ONE. 10 (8): 1-19.

Rajapakse, N.C., & Shahak, Y. (2007). Light-quality manipulation by horticulture industry. En: Whitelam, G.C.; Halliday, K.J. (editors). Light and plant development. Blackwell Publ. Oxford, UK. p. 290-312.

Rodríguez, N. & Lazo, J.V. (2012). Efecto de la calidad de luz sobre el crecimiento del corocillo (Cyperus rotundus L.). Revista Científica UDO Agrícola. 12 (1): 74-82.

Santos-Castellanos, M., Segura-Abril, M., Nustez-López, C.E.(2010). Análisis de crecimiento y relación fuente-demanda de cuatro variedades de papa (Solanum tuberosum L.) en el municipio de Zipaquirá (Cundinamarca, Colombia). Revista Facultad Nacional de Agronomía Medellín. 63 (1): 5253-5266.

Slauenwhite, K.L.I. & Qaderi, M.M. (2013). Single and interactive effects of temperature and light quality on four canola cultivars. Journal of Agronomy and Crop Science. 199: 286-298.

Štroch, M., Materová, Z., Vrábl, D., Karlický, V., Šigut, L., Nezval, J., Špunda, V. (2015). Protective effect of UV-A radiation during acclimation of the photosynthetic apparatus to UV-B treatment. Plant Physiology and Biochemistry. 96: 90-96.

Stutte, G.W., Edney, S., Skerritt, T. (2009). Photoregulation of bioprotectant content of red leaf lettuce with light-emitting diodes. HortScience. 44: 79-82.

Sun, W., Ubierna, N., Ma, J.Y., Cousins, A.B. (2012). The influence of light quality on C4 photosynthesis under steady-state conditions in Zea mays and Miscanthus x giganteus: Changes in rates of photosynthesis but not the efficiency of the CO2 concentrating mechanism. Plant, Cell and Environment. 35: 982-993.

Suyker, A.E., & Verma, S.B. (2012). Gross primary production and ecosystem respiration of irrigated and rainfed maize–soybean cropping systems over 8 years. Agricultural and Forest Meteorology. 165: 12-24.

Strasser, B., Sánchez-Lamas, M., Yanovsky, M.J., Casal, J.J., Cerdán, P.D. (2010). Arabidopsis thaliana life without phytochromes. Proceedings of the National Academy of Sciences. 107: 4776-4781

Takahashi, H., Yamada, H., Yoshida, C., Imamura, T. (2012). Modification of light quality improves the growth and medicinal quality of clonal plantlets derived from the herbal plant Gentiana. Plant Biotechnology. 29: 315-318.

Xiaoying, L., Shirong, G., Taotao, C., Zhigang, X., Tezuka, T. (2012). Regulation of the growth and photosynthesis of cherry tomato seedlings by different light irradiations of light emitting diodes (LED). African Journal of Biotechnology. 11 (22): 6169-6177.

Yeom, M., Kim, H., Lim, J., Shin, A.Y., Hong, S., Kim, J., Nam, H,G. (2014). How do phytochromes transmit the light quality information to the circadian clock in Arabidopsis? Molecular Plant. 7 (11): 1701-1704.

Zhang, Z., Ji, R., Li, H., Zhao, T., Liu, J., Lin, C., Liu, B. (2014). CONSTANS-LIKE 7 (COL7) is involved in phytochrome B (PhyB)-mediated light-quality regulation of auxin homeostasis. Molecular Plant. 7 (9): 1429-1440

Declaration of originality and transfer author's rights

The authors declare:

  1. The published data and reference materials have been duly identified with their respective credits and have been included in the bibliographic notes and citations that have been so identified and that should it be required, I have all releases and permissions from any copyrighted material. 
  2. All material presented is free from any copyright and that I accept full legal responsibility for any legal claims relating to copyrighted intellectual property, fully exonerating from responsibility the Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales.
  3. This work is unpublished and will not be sent to any other journal while waiting for the editorial decision of this journal. I declare that there is no conflict of interest in this manuscript.
  4. In case of publication of this article, all author´s rights are transferred to the Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, and so cannot be reproduced in any form without the express permission of it.
  5. By means of this document, if the article is accepted for publication by the Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, the Revista assumes the right to edit and publish the articles in national and international indices or data bases for academic and scientific use in paper, electronic, CD-ROM, internet form either of the complete text or any other known form known or to be known and non-commercial, respecting the rights of the authors.

Transfer of author rights

In case the article is approved for publication, the main author in representation of himself and his co-authors or the main author and his co-authors must cede the author rights of the corresponding article to the Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, except in the following cases:

The authors and co-authors will retain the right to revise, adapt, prepare derived works, oral presentations, and distribution to some colleagues of reprints of their own published work, if the corresponding credit is given to the Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales. It is also permissible to publish the title of the work, summary, tables, and figures of the work in the corresponding web sites of the authors or their employers, also giving credit to the Revista.

If the work has been realized under contract, the author’s employer has the right to revise, adapt, prepare derivative works, reproduce, or distribute in hard copy the published work, in a secure manner and for the exclusive use of his employees.

If the Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales were approached for permission by a third party for using, printing, or publishing specifically articles already published, the Revista must obtain the express permission of the author and co-authors of the work or of the employer except for use in classrooms, libraries, or reprinted in a collective work. The Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales reserves the possible use in its front cover of figures submitted with the manuscripts.

No other right, other than the author’s right, can be claimed by the Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales.