Abstract
Deterministic models are used in various disciplines. These continuous- or discrete-time models can exhibit regular or chaotic behavior. A chaotic system is sensitive to initial conditions and, therefore, its state in the distant future is unpredictable. I illustrate this unpredictability with the Lorenz model and the Chua circuit. I use the ionization of a one-dimensional alkali atom by a microwave field as an example of a system that exhibits a certain kind of predictability; however, its behavior is chaotic.
Keywords
References
F. Diacu, P. Holmes, Celestial Encounters: The Origins of Chaos and Stability, Princeton, Princeton University Press (1996).
P. Février, Determinismo e indeterminismo, Universidad Nacional Autónoma de México, México (1957).
J. Barrow-Green, Poincaré and the Three Body Problem, History of Mathematics, vol. 11, AMS, London (1997).
D. Ruelle, Azar y caos, Alianza Editorial, Madrid (1993).
A. J. Lichtenberg, M. A. Lieberman, Regular and Chaotic Dynamics, Springer, Berlin (1992).
V. F. Lazutkin, KAM Theory and Semiclassical Approximations to Eigenfunctions, Springer, Berlin (1991).
E. N. Lorenz, "Deterministic Nonperiodic Flow", Journal of the Atmospheric Sciences 20: 130-141 (1963).
G. Q. Zhong, F. Ayrom, "Experimental confirmation of chaos from Chua's circuit", Int. J. Circuit Theory Applic. 13(1): 93-98 (1985).
L. O. Chua, L. Pivka, C. W. Wu, "A Universal circuit for studying Chaotic Phenomena", Phil. Trans.: Phys. Se. and Eng., 353(1701): 65-84 (1995).
G. W. Flake, The Computational Beauty of Nature, The MIT Press, Cambridge (1999).
F. Verhulst, "Metaphors for Psychoanalysis", Nonlinear Science Today 4 (1994), http://gonzo.springer-ny.com/nst/.
J. D. Farmer, "Information Dimension and the Probabilistic Structure of Chaos", Z. Naturforsch. 37a: 1304 (1982).
V. I. Oseledec, "A multiplicative ergodic theorem: Lyapunov characteristic numbers for dynamical systems", Trans. Moscow Math. Soc. 19: 197 (1968). Incluido en: Y. G. Sinai (editor), Dynamical Systems (A collection of papers), World Scientific, Singapore (1991).
G. Boffetta, M. Cencini, M. Falcioni, A. Vulpiani, "Predictability: a way to characterize complexity", Physics Reports 356: 367-474 (2002).
H. G. Schuster, Deterministic Chaos, VCH, Weinheim (1995).
B. Chirikov, "Natural Laws and Human Prediction" en Law and Prediction in the Light of Chaos Research, P. Weingartner and G. Schurz (eds.), Springer, Berlin (1996).
R. Shaw, "Strange Attractors, Chaotic Behavior, and Information Flow", Z. Naturforsch. 36a: 80 (1981).
A. S. Elwakil, M.P. Kennedy, "Chua's circuit decomposition: a systematic design approach for chaotic oscillators", Journal of the Franklin Institute 337: 251-265 (2000).
D. Campos, M.C. Spinel, J. Madroñero, "Ionization of one-dimensional alkali atoms by microwave fields", J. Phys. A: Math. Gen. 34: 8101-8118 (2001).
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.