ON THE QUANTUM STUCTURE OF THE UNIVERSAL ENVELOPING ALGEBRA OF THE LIE ALGEBRA ST (2)
PDF

How to Cite

Guerrero, B. (2024). ON THE QUANTUM STUCTURE OF THE UNIVERSAL ENVELOPING ALGEBRA OF THE LIE ALGEBRA ST (2). Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 24(92), 427–434. https://doi.org/10.18257/raccefyn.24(92).2000.2743

Downloads

Download data is not yet available.

Métricas Alternativas


Dimensions

Abstract

The structure of Hopf co-Poisson algebra on the universal enveloping algebra U(S7(2)) of Lie algebra S7(2) is determined with the help of a solution of the Yang-Baxter equation. Using this solution, a bracket on the dual space of Lie algebra ST(2) is also determined. This cobracket on ST(2) induces a deformation of the universal enveloping algebra U(S7(2)) which has a Hopf algebra structure, as we shall verify. This Hopf algebra is called the quantum group associated to a universal enveloping algebra.

https://doi.org/10.18257/raccefyn.24(92).2000.2743

Keywords

Lie bialgebras | Hopf algebras | Poisson brackets | Lie Poisson group | Hopf co-Poisson algebra | Universal enveloping algebra | r-matrix | Quantum group | Yang-Baxter equation
PDF

References

G.E. Arutyunov & P.B. Medvedev, Quantization of the extemal algebro on a Poisson-Li.e group, hep-th/9311096 (1993), 1-20.

V. Chari & A. Pressley, A guide to Quantum Groups, Cambridge University Press, Cambridge University, 1994.

J. Dixmier, Envel-Oping Algebms, Graduate Studies in Mathematics 11, American Mathematical Society, 1996.

V, Drinfeld, Quantum groups, ICM-86, 1986, 798-820.

V. Drinfeld, On sorne unsolved problems in qu.antum group theory, Lecture Notes in Mathematics 1510, Springer­Verlag, 1992, 1-8.

H. D. Doebner, J. D. Hennig & W. Lücke, Quantum Grou.ps, Lecture Notes in Physics 370, Springer-Verlag, 1990.

P. Etingof & David Kazhdan, Quantization of Pois­son algebraic groups and Poi9son lwmogeneous spaces, q-alg 9510020 (1995), 1-9.

Berenice Guerrero, Sobre una estructura diferencial cuántica. Reporte interno No. 56, Departamento de Matemáticas y Estadística, Universidad Nacional de Colom­bia, 1997.

Berenice Guerrero, Cuantización no estándar del grupo triangular ST(S), Lecturas Matemáticas 18 (1997), 23-44. [10] D. Gurevich & V. Ruhtsov, Yang-Baxter equation and deformation of associative and Lie algebras. Lectures Notes in Mathematics 1510,'Springer-Verlag, 1992, 9-46.

C. Kassel, Quantum Groups, Springer-Verlag, Berlin, 1995.

J. H. Lu & A. Weinstein, Poisson Lie groups, dress­ing trasnformations and Bruhat decompositions, J. Differen­tial Geometry 31 (1990), 501-526.

S. Majid Foundations of Quantum Group Theory, Cam­bridge University Press, 1995.

L. A. Takthajan, Quantum groups and integrable mod­els, Advanced Studies in Pure Mathematics 19 (1990), 435- 457.

L. A. Takthajan, Lectures on Quantum Groups, Nakai Institute Series in Mathematical Physics (1990), 193-225. (16] N. Yu. Reshetikhin, L. Takthajan & L. D. Fad­

N. Yu. Reshetikhin, L. Takthajan & L. D. Fad­ deev, Quantization of Lie groups and Lie algebras1 Algebra and Analyis (1989), 178-206.

M. A. Semenov-Tian-Shnsky, Lectures on R­matrices, PoUJson-Lie Groups and Integrable Systems, Pro­ ceedings of the CIMPA School 1991 Nice (France), World Scientific, 1994, 269-318.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2024 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales