Abstract
Axinyssamine hydrochloride (compound 1) was recently found in the marine sponge Axinyssa ambrosía at concentrations in the order of 10 mg/mL. Lethality assays using compound 1 against the coral Madracis mirabilis allowed determining that the mentioned compound is lethal to coral polyps at the natural concentration present in the sponge. Additionally, by performing exudation experiments in aquaria and chemical detection by HRGC-MS (sean and sim modes), it was found that the compounds 11-formamide-7β-H-eudesm-5-ene (2) and 4α-formamidogorgon-11-ene (3) are continually exuded by Axinyssa ambrosía, creating a protective chemical barrier around the sponge. Exudation rates increase 3.80 and 2.47-fold, respectively, for each compound under stress conditions or aggression. These results suggest that the sponge Axinyssa ambrosía may use the above-mentioned three metabolites as chemical defenses.Other experiments were carried out with the sponge Aplysina insularis in situ, under ecologically relevant conditions, with the purpose of determining if the chemical composition (brominated metabolites) changes over variable time periods after inflicting wounds on the sponge surface. Metabolites were detected and identified by LC-MS. No evidence of chemical transformation of high molecular weight compounds into the compounds aeroplysinin-1 (4) and/or the dibromocyclohexadienone (5) was obtained as a consequence of tissue damage, both in short (2.5 minutes) and long-duration experiments (120 minutes). These results suggest that the conversion of high molecular weight compounds into small, active forms does not take place in Aplysina insularis as a chemical defense mechanism.
Keywords
References
Becerro M.; López N. I; Turon X. y Uriz M. 1994. Antimicrobial activity and surface bacterial film in marine sponges. J. Exp. Mar. Biol. Ecol., 179: 195-205.
Becerro M.; Turon X. & Uriz M. 1995. Natural variation of toxicity in encrusting sponge Crambe crambe (Schmidt) in relation to size and environment. J. Chem. Ecol., 21: 1931-1946.
Bergquist P.R. & Bedford J. 1978. The incidence of antibacterial activity in marine Demospongiae; systematic and geographic considerations. Mar. Biol., 46: 215-221.
Braekman J, C. & Daloze D. 1986. Chemical defense in sponges. Pure and Appl. Chem., 58: 357-364.
Chanas B.; Pawlik J. R.; Lindel T. & W. Fenical. 1996. Chemical defense of the Caribbean sponge Agelas clathrodes (Schmidt). J. Exp. Mar. Biol. Ecol., 208: 185-196.
Davis, A.R.; Targett N.M.; McConnell O.J. & C.M. Young. 1989. Epibiosis of marine algae and benthic invertebrates: Natural products chemistry and other mechanisms inhibiting settlement and overgrowth. En: Scheuer, P. (Ed.) Bioorganic Marine Chemistry. Vol. 3. pp. 85-114 Springer-Verlag. Berlín.
Dueñas, A. 2000. Ensayos sobre actividad y ecología química de extractos crudos de la esponja marina Axynissa ambrosía (Clase Demospongiae, Familia Halichondriidae). Trabajo de Grado, Biología, Universidad Nacional de Colombia.
Duque, C.; Bonilla A.; Bautista E. & Zea S. 2001. Exudation of low molecular weight compounds (thiobismethane, methyl isocyanide and methyl isothiocyanate) as a possible chemical defense mechanism in the marine sponge Ircinia felix. Biochem. Syst. Ecol., 29: 17-25.
Ebel, R.; Brenzinger M.; Kunze A.; Gross H. & Proksch P. 1997. Wound activation of protoxins in the marine sponge Aplysina aerophoba. J. Chem. Ecol., 23: 1451-1462.
Engel, S. & Pawlik J.R. 2000. Allelopathic activities of sponge extracts. Mar. Ecol. Prog. Ser., 207: 273-281.
Faulkner, D.J. 2001. Marine Natural Products. Nat. Prod. Rep., 18: 1-49.
Fusetani, N. 1997. Marine natural products influencing larval settlement and metamorphosis of benthic invertebrates. Curr. Org. Chem., 1: 127-152.
Hay, M.E. 1996. Marine chemical ecology: what's known and what's next? J. Exp. Mar. Biol. Ecol., 200: 103-134.
Lindquist, N. & Hay M.E. 1996. Palatability and chemical defense of marine invertebrate larvae. Ecol. Monogr., 66: 431-450.
McClintock, J.B. & Baker B.J. 1997. Palatability and chemical defense of eggs, embryos and larvae of shallow-water Antarctic marine invertebrates. Mar. Ecol. Prog. Ser., 154: 121-131.
Parra, F. 1997. Aproximación al posible papel ecológico de la producción de metabolitos secundarios en la esponja marina Ircinia felix (Porifera: Demospongiae). Trabajo de Grado, Biología, Universidad Nacional de Colombia.
Paul, V.J. 1992. Chemical defenses of benthic marine invertebrates. En: Paul, V.J. (ed.) Ecological Roles of Marine Natural Products. P. 164-188. Cornell University Press. Nueva York.
Pawlik, J.R. 1993. Marine invertebrate chemical defenses. Chem. Rev., 93: 1911-1922.
Pawlik, J.R. 1997. Fish predation on Caribbean reef sponges: An emerging perspective of chemical defenses. Proc. 8th Int. Coral Reef Symp., 2: 1255-1258.
Pawlik, J.R. 1998. Coral reef sponges: Do predatory fishes affect their distribution? Limnol. and Oceanogr., 43: 1396-1399.
Pawlik, J. R.; Chanas B.; R. Toonen J. & Fenical W. 1995. Defenses of Caribbean sponges against predatory reef fish. l. Chemical Deterrency. Mar. Ecol. Prog. Ser., 127: 183-194.
Petrichtcheva, N. V. 2002a. Estudio químico y de actividad biológica de las esponjas marinas del género Axynissa. Tesis doctoral, Química, Universidad Nacional de Colombia.
Petrichtcheva, N. V.; Duque C.; Dueñas A.; Zea S.; Hara N. & Fujimoto Y. 2002b. Nitrogenous eudesmane type compounds isolated from the Caribbean sponge Axinyssa ambrosía. J. Nat. Prod. (en prensa).
Petrichtcheva, N. V.; Duque C.; Dueñas A.; Zea S. & Fujimoto Y. 2001. Ambrosinosterol: un nuevo 5a,8a-epidoxiesterol citotóxico aislado de la esponja marina Axinyssa ambrosía. Rev. Acad. Colomb. Cienc., 25: 569-577.
Porter, J.W. & Targett N. M. 1988. Allelochemical interactions between sponges and corals. Biol. Bull., 175: 230-239.
Puyana, M. 2001. Chemical Ecology of Caribbean sponges of the genus Aplysina. Disertación doctoral. Universidad de California. San Diego. Scripps Institution of Oceanography. 214 p.
Puyana M.; Fenical W. & Pawlik J. R. 2002. Are there activated chemical defenses in sponges of the genus Aplysina from the Caribbean? Sometido a publicación en Marine Ecology Progress Series.
Sammarco, P. W. & Coll J.C. 1988. The Chemical Ecology of Alcyonarian Corals. Coelenterata: Octocorallia. En: Scheuer, P. (Ed.) Bioorganic Marine Chemistry. Vol. 2. pp. 89-115. Springer-Yerlag. Berlín.
Sullivan, B.; Faulkner D. J. & Webb L. 1983. Siphonodictine, a metabolite of the burrowing sponge Siphonodyction sp. that inhibits coral growth. Science, 221: 1175-1176.
Targett, N. M. & Schmahl G. P. 1984. Chemical ecology and distribution of sponges in the Salt River canyon, St. Croix, U.S.V.I. National Oceanic and Atmospheric Administration, Tech. Mem. OAR-NURP 1. Rockville. 29 p.
Thacker, R.W.; Becerro M.A.; Lumbang W.A. & Paul V. J. 1998. Allelopathic interactions between sponges on a tropical reef. Ecology, 79: 1740-1750.
Thompson, J. E. 1985. Exudation of biologically-active metabolites in the sponge Aplysina fistularis. l. Biological evidence. Mar. Biol., 88: 23-26.
Thompson, J. E.; Barrow K.D. & Faulkner D.J. 1983. Localization of two brominated metabolites, aerothionin and homoaerothionin, in spherulous cells of the marine sponge Aplysina fistularis (= Verongia thiona). Acta Zoologica, 64: 199-210.
Thompson, J. E.; R. P. Walker & Faulkner D. J. 1985. Screening and bioassays for biologically active substances from forty marine sponge species from San Diego, California, USA. Mar. Biol., 88: 11-21.
Walker, R. P.; Thompson J. E. & Faulkner D. J. 1985. Exudation of biologically-active metabolites in the sponge Aplysina fistularis. II. Chemical evidence. Mar. Biol., 88: 27-32.
Zea, S.; Parra F.; Martínez A. & Duque C. 1999. Production of bioactive furanosesterterpene tetronic acids as possible internal chemical defense mechanism in the sponge Ircinia felix (Porifera: Demospongiae). Mem. Ql. Mus., 44: 687-697.
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.