Abstract
A quick practical strategy is proposed for estimating missing data in time series that obey low-order ARIMA models and whose length is greater than that supported by current statistical computer programs. The proposed methodology is based on the idea of identifying the series model from its subseries. To obtain these subseries, a minimal number of data points following a missing observation are deduced to achieve numerical stabilization in its recursive prediction.
Keywords
References
Bell, W. R., Signal extraction for nonstationary time series. The Annals of Statistics, 120 (1984), 646-664.
Brockwell, P. J. & Davis, R. A., Time Series: Theory and Methods. Springer Verlag, New York, 1991.
Catlin, D. E., Estimation, Control, and the Discrete Kalman Filter. Springer Verlag, New York, 1989.
Delicado, P. & Justel, A., Forecasting with missing data: Application to coastal wave heights. Journal of Forecasting, 18 (1999), 285-289.
Doan, T., Regression Analysis of Time Series (RATS), Estima, Evanston, IL, 1992.
Gomez, V. & Maravall, A., Estimation, prediction, and interpolation for nonstationary series with the Kalman filter. Journal of the American Statistical Association, 89 (1994), 611-624.
Gomez, V. & Maravall, A., PROGRAMS TRAMO AND SEATS: Instructions for the user, Banco de España-Servicio de Estudios, Documento de Trabajo No. 9628, Madrid, 1996.
Nieto, F. H., Una nota sobre la estimacion de datos faltantes en una serie temporal, usando la función de autocorrelación dual. Estadística, 46 (1994), 85-103.
Nieto, F. H., A note on interpolation of ARIMA processes. Communications in Statistics, Theory and Methods, 26, No. 10, (1997).
Peña, D. & Maravall, A., Interpolation, outliers, and inverse autocorrelations. Communications in Statistics: Theory and Methods, 20 (1991), 3175-3186.
Politis, D. N., Romano, J. P., & Wolf, M., Subsampling for heteroskedastic time series. Journal of Econometrics, 81 (1997), 281-317.
Tong, H. & Lim, K. S., Threshold autoregression, limit cycles, and cyclical data. Journal of the Royal Statistical Society, Series B, 42 (1980), 245-292.
Tong, H., Nonlinear Time Series, Oxford University Press, Oxford, 1990.
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.