Metabolic modulation under increasing temperatures: an ontogenetic approach in the high mountain tropical frog Dendropsophus molitor (Hylidae)
PDF (Español (España))

How to Cite

Poveda-Cantini, J., & Cristancho Mejía, E. (2024). Metabolic modulation under increasing temperatures: an ontogenetic approach in the high mountain tropical frog Dendropsophus molitor (Hylidae). Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 48(188), 523–536. https://doi.org/10.18257/raccefyn.2655

Downloads

Download data is not yet available.

Métricas Alternativas


Dimensions

Abstract

High-mountain tropical environments are predicted to present greater thermal extremes due to climate change in the coming years. In this scenario, endemic species with limited distribution may have population impacts. Therefore, it is important to study the physiological responses of these organisms in such environmental conditions. In this context, our objective was to estimate the effect of temperature on the respiration of the high mountain frog Dendropsophus molitor by determining oxygen consumption (V̇O2) at increasing temperatures (18°C to 28°C) in Gosner development stages 31–40 larvae, Gosner stage 43–45 juveniles, and adults. V̇O2 in larvae was measured using a dissolved oxygen (DO) probe and in juveniles and adults using a gaseous oxygen sensor in a closed chamber. Juvenile individuals and adults had a V̇O2 increase as a function of temperature and larvalstage individuals’ V̇O2 presented a monotonic trend in response to the thermal treatment evaluated, with an increase from 18 to 23°C followed by a decrease of 23% from 23 to 28°C. This suggests that the respiratory function of this species’ larvae is vulnerable to high temperatures, so this would be the most susceptible development phase before a global warming scenario.

https://doi.org/10.18257/raccefyn.2655

Keywords

Global warming | Oxygen consumption | Amphibians | Ecophysiology | Standard metabolic rate
PDF (Español (España))

References

Alves-Ferreira, G., Talora, D.C., Solé, M., Cervantes-López, M.J., Heming, N.M. (2022). Unraveling global impacts of climate change on amphibians distributions: A life-history and biogeographic-based approach. Frontiers in Ecology and Evolution, 10, 1-12. https://doi.org/10.3389/fevo.2022.987237.

Angilletta, M. (2009). Thermal adaptations, a theoretical and empirical synthesis. Oxford University Press Inc.

Angilletta, M., Nierwiarowski, P., Navas, C.A. (2002). The evolution of thermal physiology in ectotherms. Journal of Thermal Biology, 27(4), 249-268. https://doi.org/10.1016/S0306-4565(01)00094-8

Bernal, M.H., Solomon, K.R., Carrasquilla, G. (2009). Toxicity of formulated Glyphosate (Glyphos) and Cosmo-Flux to larval juvenile Colombian frogs 2. Field and laboratory microcosm acute toxicity. Journal of Toxicology and Environmental Health. Part A, 72, 966-973. https://doi.org/10.1080/15287390902929717

Blem, C.R, Ragan C.A., Scott L.S. (1986). The thermal physiology of two sympatric treefrogs Hylacinerea and Hyla chrysoscelis (Anura:Hylidae). Comparative Biochemistry & Physiology Part A, 85A(3), 563- 570. https://doi.org/10.1016/0300-9629(86)90447-0

Brattstrom, B.H. (1963). A preliminary review of the thermal requirements of amphibians. Ecologica, 44(2), 238-255. https://doi.org/10.2307/1932171

Brown, D.D. & Cai, L. (2007). Amphibian metamorphosis. Developmental Biology, 306, 20–33. https://doi.org/10.1016/j.ydbio.2007.03.021

Broyles R. H. (1981). Changes in the Blood during Amphibian Metamorphosis. In L. I. Gilbert & E.

Frieden (Eds) Metamorphosis: A problem in developmental biology. Springer. USA.

Catenazzi, A., Lehr, E., Vredenburg, V.T. (2014). Thermal physiology, disease and amphibian declines on the Eastern slopes of the Andes. Conservation Biology, 28(2), 509-517. https://doi.org/10.1111/cobi.12194.

Costanzo, J.P., Lee R. E., Wright M.F. (1991). Effect of cooling rate on the survival of frozen wood frogs, Rana sylvatica. Journal of Comparative Physiology B, 161, 225-229. https://doi.org/10.1007/BF00262302

Cupp, P.V. (1980). Thermal tolerance of five salientian amphibians during development at metamorphosis. Herpetologica, 36(3), 234-244. http://www.jstor.org/stable/3891820

de Andrade, D. V. & Abe, A. S. (1997). Evaporative water loss and oxygen uptake in two casque-headed tree frogs, Aparasphenodon brunoi and Corythomantis greeningi (Anura, Hylidae). Comparative Biochemistry & Physiology Part A, 118(3), 685-689. https://doi.org/10.1016/s0300-9629(96)00481-1.

Donohoe P. H., West T., Boutillier R. G. (1998). Respiratory, metabolic, and acid-base correlates of aerobic metabolic rate reduction in overwintering frogs. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 274, R704-R710.

Galeano, S.P., Urbina, J.C., Gutiérrez-C, P.D.A., Rivera-C, M., Páez, V. (2006). Los anfibios de Colombia, diversidad y estado del conocimiento. En: M.E. Chávez y M. (Santamaría Ed).

Informe Nacional sobre el avance en el conocimiento y la información de la biodiversidad 1998-2004. (106-118). Instituto de Investigaciones Biológicas Alexander von Humboldt, Bogotá.

Gahlenberck H. & Bartels H. (1968). Temperaturadaptation der Sauerstoffaffinität des Blutes von Rana esculenta L. Zeitschrift für vergleichende Physiologie, 59, 232 -240.

Gosner, K.L. (1960). A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica, 16(3), 183-190. http://www.jstor.org/stable/3890061

Guarnizo, C., Armesto, O., Acevedo, A. (2014). Dendropsophus labialis (Peters, 1863). En V. Paez (Ed). Catálogo de anfibios y reptiles de Colombia, Asociación Colombiana de Herpetología, 2(2), 56-61.

Gutiérrez-Pesquera, L.M. (2015). Una valoración macrofisiológica de la vulnerabilidad al calentamiento global: Análisis de los límites de tolerancia térmica en comunidades de anfibios en gradientes latitudinales y altitudinales. Informe final Becas de postgrado para proyectos de investigación para cooperación al desarrollo, Gobierno de España. Universidad Católica del Ecuador. Quito, Ecuador. https://www.researchgate.net/profile/Luis-Miguel-Gutierrez-Pesquera/publication/306240109

Hargreaves M. & Spriet L. L. (2018). Exercise Metabolism: Fuels for the Fire. Cold Spring Harbor Perspectives in Medicine, 8, a029744.

Hillman, S.S. (1976). Cardiovascular correlates of maximal oxygen consumption rates in anuran amphibians. Journal of Comparative Physiology, 109(2), 199-207. https://doi.org/10.1007/BF00689418

Jørgensen B. (1988). Metabolic costs of growth and maintenance in the toad, Bufo bufo. Journal of Experimental Biology, 138, 319-331.

Kern P., Crampa R.B., Franklin C.E. (2015). Physiological responses of ectotherms to daily temperature variation. Journal of Experimental Biology, 218, 3068-3076.

Lighton J. R. B. (2008). Measuring Metabolic Rates. A Manual for Scientists. Oxford University Press Inc. New York.

Mahoney, J.J. & Hutchinson, V.H. (1969). Photoperiod acclimation and 24-hour variations in the critical thermal maxima of a tropical and temperate frog. Oecologia, 2, 143- 161. https://doi.org/10.1007/BF00379157

McCutcheon, F.H. (1936). Hemoglobin function during the life history of the bullfrog. Journal Cellular Comparative Physiology, 8, 63-81. https://doi.org/10.1002/jcp.1030080107

Meza-Parral Y., García-Robledo C., Pineda E., Escobar F., Donnelly M.A. (2020). Standardized ethograms and a device for assessing amphibian thermal responses in a warming world. Journal of Thermal Biology, 89, 102565. https://doi.org/10.1016/j.jtherbio.2020.102565

Meirelles N.C., Vieira M., Airoldi. L. Focesi A. Jr. (1979). Some larval properties of Pipa carvalhoi adult hemoglobins. Comparative Biochemistry & Physiology, 62A, 859-862.

Mueller C.A. & Seymour R.S. (2011). The Regulation Index: A New Method for Assessing the Relationship between Oxygen Consumption and Environmental Oxygen. Physiological and Biochemical Zoology, 84(5), 522-532.

Navas, C.A. (1997). Thermal extremes at high elevation in the Andes: Physiological ecology of the frogs. Journal of Thermal Biology, 22(6), 467-477. https://doi.org/10.1016/S0306-4565(97)00065-X

Navas, C.A, Úbeda, C.A., Logares, R., Jara, F.G. (2010). Thermal tolerances in tadpoles of three species of Patagonian anurans. South American Journal of Herpetology, 5(2), 89 - 96. https://doi.org/10.2994/057.005.0203

Nowakowsky, A.J., Watling, J.I., Whitfield, S.M., Todd, B.D., Kurz, D.J., Donnelly, M.A. (2017). Tropical amphibians in shifting thermal landscapes under land-use and climate change. Conservation Biology, 31(1), 96-105. https://doi.org/10.1111/cobi.12769

Paaijmans, K. P., Heinig, R. L., Seliga, R. A., Blanford, J. I., Blanford, S., Murdock, C. C., Thomas, M. B. (2013). Temperature variation makes ectotherms more sensitive to climate change. Global Change Biology, 19(8), 2373-2380. https://doi.org/10.1111/gcb.12240

Perotti, M., Bonino, M., Ferraro, D., Cruz, F. (2018). How sensitive are temperate tadpoles to climate change? The use of thermal physiology and niche model tools to assess vulnerability. Zoology, 127, 95-105. https://doi.org/10.1016/j.zool.2018.01.002

Pinder A. & Burggren W. (1983). Respiration during chronic hypoxia and hyperoxia in larval and adult bullfrogs. (Rana catesbeiana) II. Changes in respiratory properties of whole blood. Journal of Experimental Biology, 10, 205-213.

Pounds, J.A., Bustamante, M.R., Coloma, L.A., Consuegra, J.A., Fogden, M., Foster, P.N., La Marca E., Masters K.L., Merino-Viteri A., Puschendorf R., Ron S.R., Sánchez-Azofeifa G.A., Still C.J., Young B.E. (2006). Widespread amphibian extinctions from epidemic disease driven by global warming. Nature, 439(7073), 161-167. https://doi.org/10.1038/nature04246

Pu P., Zhao Y., Niu Z., Cao W., Zhang T., He J., Wang J., Tang X., Chen Q. (2021). Comparison of hematological traits and oxygenation properties of hemoglobins from highland and lowland Asia. Journal of Comparative Physiology B, 191(6), 1019-1029.

Rowe, C. L. & Crandall, E. A. (2018). The acute thermal respiratory response is unique among species in a guild of larval anuran amphibians-Implications for energy economy in awarmer future. Science of the Total Environment, 618, 229-235. https://doi.org/10.1016/j.scitotenv.2017.10.332

Schulte P. M. (2015). The effects of temperature on aerobic metabolism: towards a mechanistic understanding of the responses of ectotherms to a changing environment. Journal of Experimental Biology, 218(12), 1856-1866. https://doi.org/10.1242/jeb.118851

Shelton, G., Jones, D.R., Milsom, W.K. (2011). Control of breathing in ectothermic vertebrates. En: E. Terjung (Ed.). Comprehensive Physiology (pp.857-909). Oxford University Press Inc. New York. https://doi.org/10.1002/cphy.cp030228

Somero G. N. (1995). Proteins and temperature. Annual Review of Physiology, 57, 43-68. https://doi.org/10.1146/annurev.ph.57.030195.000355

Storey K.B. (2002). Life in the slow lane: molecular mechanisms of estivation. Comparative Biochemistry & Physiology, Part A 133, 733-754.

Triana-Velásquez, T.M., Montes-Rojas, C.M., Bernal M.H. (2013). Efectos letales y subletales del glifosato (ROUNDUP® Active) en embriones de anuros colombianos. Acta Biológica Colombiana, 18(2), 271-278.

Weber R. E., Ostojic H., Fago A., Dewilde S., Van Hauewaert M-L, Moens L., Monge C. (2002). Novel mechanism for high-altitude adaptation in hemoglobin of the Andean frog Telmatobius peruvianus. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 283, R1052-R1060.

Whitfield, S. M., Bell, K. E., Philippi, T., Sasa, M., Bolaños, F., Chaves, G., Savage, J. M., Donnelly, M. A. (2007). Amphibian and reptile declines over 35 years at La Selva, Costa Rica. Proceedings of the National Academy of Sciences of the United States of America, 104(20), 8352-8356. https://doi.org/10.1073/pnas.0611256104

Zhu, W., Zhang, M., Chang, L., Zhu, W., Li, C., Xie, F., Zhang, H., Zhao, T., Jiang, J. (2019).Characterizing the composition, metabolism, and physiological functions of the fatty liver in Rana omeimontis tadpoles. Frontiers in Zoology, 16, 42. https://doi.org/10.1186/s12983-019-0341-x

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2024 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales