Abstract
We studied how calcination parameters such as temperature and duration influence the phase composition and corrosion resistance of anodized titanium dioxide (TiO2) coatings. We synthesized TiO2 anatase and rutile phases on titanium surfaces via anodization at 40 V followed by calcination at 350°C and 450°C, respectively. We used electrochemical impedance spectroscopy (EIS) to assess these properties and behaviors. Our results indicated that longer calcination times and higher temperatures favored the rutile phase and shorter times resulted in coatings with a mixture of anatase and rutile. The rutile phase exhibited superior corrosion resistance due to its more complete crystallization and reduced structural defects. These results underscore the importance of optimizing calcination parameters to achieve desired crystalline phases and enhance corrosion resistance, with promising implications for applications in corrosive and mechanically challenging environments.
References
Ali, I., Suhail, M., Alothman, Z. A., Alwarthan, A. (2018). Recent advances in syntheses, properties and applications of TiO2 nanostructures. RSC Advances, 8(53), 30125-30147. https://doi.org/10.1039/c8ra06517a
Aperador, W., Ramírez, C., Caicedo, JC. (2012). The effect of Ti(CN)/TiNb(CN) coating on erosion-corrosion resistance. Ingeniería e investigación, 32(2), 6-11. https://doi.org/10.15446/ing.investig.v32n2.37522
Arzaee, N. A., Yodsin, N., Ullah, H., Sultana, S., Mohamad N. M. F., Mahmood Zuhdi, A. W., Mohd Yusoff, A. R. B., Jungsuttiwong, S., Mat Teridi, M. A. (2023). Enhanced hydrogen evolution reaction performance of anatase–rutile TiO₂ heterojunction via charge transfer from rutile to anatase. Catalysis Science & Technology, 13(24), 6937-6950. https://doi.org/10.1039/D3CY00918A
Baram, N. & Ein-Eli, Y. (2010). Electrochemical Impedance Spectroscopy of Porous TiO 2 for Photocatalytic Applications. The Journal of Physical Chemistry C, 114(21), 9781-9790. https://doi.org/10.1021/jp911687w
Bautista-Ruiz, J. H., Raba, A. M., Joya, M. R. (2018). Influence of the H2 O content and the time on the formation of nanostructures in a chemical solution of H2 O/HF/NH4 F/EG. Journal of Physics: Conference Series, 1126(1), 012042. https://doi.org/10.1088/1742-65.96/1126/1/012042
Camargo, A., Aperador C., W. A., Ríos, A., Ortiz, C., Vera, E. (2009). Caracterización mediante espectroscopía de impedancia electroquímica de películas anódicas crecidas sobre Al 2024-T3. Revista de la Sociedad Colombiana de Física, 41(2), 261-263.
Çomaklı, O., Yazıcı, M., Yetim, T., Yetim, A.F., Çelik, A. (2015). The effect of calcination temperatures on structural and electrochemical properties of TiO2 film deposited on commercial pure titanium. Surface and Coatings Technology. 285, 298-303. https://doi.org/10.1016/j.surfcoat.2015.11.055
Eddy, D.R., Permana, M.D., Sakti, L.K., Sheha, G.A.N., Solihudin; Hidayat, S., Takei, T., Kumada, N., Rahayu, I. (2023). Heterophase Polymorph of TiO 2 (Anatase, Rutile, Brookite, TiO 2 (B)) for Efficient Photocatalyst: Fabrication and Activity. Nanomaterials, 13, 704. https://doi.org/10.3390/nano13040704
Gabellini, L., Calisi, N., Martinuzzi, S. M., Taurino, R., Innocenti, M., Bacci, T., Borgioli, F., Galvanetto, E., Caporali, S. (2023). Effect of Bath Composition on Titanium Anodization Using the Constant-Current Approach: A Crystallographic and Morphological Study. Coatings, 13(7), 1284. https://doi.org/10.3390/coatings13071284
Gonçalves, M., Pereira, J., Matos, J., Vasconcelos, H. (2018). Photonic Band Gap and Bactericide Performance of Amorphous Sol-Gel Titania: An Alternative to Crystalline TiO 2 . Molecules, 23(7), 1677. https://doi.org/10.3390/molecules23071677
Jiaguo Y. & Bo W. (2010). Effect of calcination temperature on morphology and photoelectrochemical properties of anodized titanium dioxide nanotube arrays. Applied Catalysis B: Environmental, 94(3-4), 295-302. https://doi.org/10.1016/j.apcatb.2009.12.003
Kim, M. G., Kang, J. M., Lee, J. E., Kim, K. S., Kim, K. H., Cho, M., Lee, S. G. (2021). Effects of Calcination Temperature on the Phase Composition, Photocatalytic Degradation, and Virucidal Activities of TiO 2 Nanoparticles. ACS Omega, 6(16), 10668-10678. https://doi.org/10.1021/acsomega.1c01684
Kim,S. A., Hussain, S. K. K., Abbas, M. A., Bang, J. H. (2022). High-temperature solid-state rutile-to-anatase phase transformation in TiO2. Journal of Solid-State Chemistry, 315, 123510. https://doi.org/10.1016/j.jssc.2022.123510.
Lee, V. S., Cho, A. Y., Rim, Y. S., Park, J.-Y., Choi, T. (2020). Synergistic Design of Anatase–Rutile TiO2 Nanostructured Heterophase Junctions toward Efficient Photoelectrochemical Water Oxidation. Coatings, 10(6), 557. https://doi.org/10.3390/coatings10060557
Li, B., Zhang, L., Li, Y., Li, H., Zhou, L., Liang, C., Wang, H. (2019). Corrosion resistance and biological properties of anatase and rutile coatings on titanium surface. Chemistry Letters, 48, 1355-1357. https://doi.org/10.1246/cl.190549
Li, L., Lyu, L., Gui, J., Sun, X., Qian, Y., Yang, G. (2019). Facet-dependent interfacial charge transfer in TiO₂/nitrogen-doped graphene quantum dots heterojunctions for visible-light driven photocatalysis. Catalysts, 9(4), 345. https://doi.org/10.3390/catal9040345
Lin, J., Heo, Y. U., Nattestad, A., Bachmatiuk, A., Ha, J. S., Zhang, X. (2014). 3D hierarchical rutile TiO₂ and metal-free organic sensitizer producing dye-sensitized solar cells with 8.6% conversion efficiency. Scientific Reports, 4, 5769. https://doi.org/10.1038/srep05769
Luttrell, T., Halpegamage, S., Tao, J., Kramer, A., Sutter, E., Batzill, M. (2014). Why is anatase a better photocatalyst than rutile - Model studies on epitaxial TiO2 films. Scientific Reports, 4, 4043. https://doi.org/10.1038/srep04043
Manut, A.S., Zoolfakar, M.H. Mamat, N.S., Ghani, Ab M. Zolkapli, M. (2020) Characterization of Titanium Dioxide (TiO2) Nanotubes for Resistive-type Humidity Sensor. IEEE International Conference on Semiconductor Electronics (ICSE), Kuala Lumpur, Malaysia, 2020, pp. 104-107, https://doi.org/10.1109/ICSE49846.2020.9166854
Mansfeldova, V., Mansfeldova, V., Zlamalova, M., Tarabkova, H., Janda, P., Vorokhta, M., Piliai, L., Kavan, L. (2021). Work Function of TiO 2 (Anatase, Rutile, and Brookite) Single Crystals: Effects of the Environment. The Journal of Physical Chemistry C, 125(3), 1902-1912. https://doi.org/10.1021/acs.jpcc.0c10519
Mateus, H. M., Bautista-Ruiz, J., Barba-Ortega, J., Joya, M. R. (2019). Formation of titanium oxide nanotube arrays by controlling H2O and time through anodic oxidation. Rasyan. Journal of Chemistry, 12(3), 1304-1314. https://doi.org/10.31788/RJC.2019.1235265
Monetta, T., Acquesta, A., Carangelo, A., Bellucci, F. (2017). TiO₂ nanotubes on Ti dental implant. Part 2: EIS characterization in Hank’s solution. Metals, 7(6), 220. https://doi.org/10.3390/met7060220
Parambil, N. S. K., Raphael, S. J., Joseph, P., Dasan, A. (2023). Recent advancements toward visible-light-driven titania-based nanocomposite systems for environmental applications: An overview. Applied Surface Science Advances, 18, 100487. https://doi.org/10.1016/j.apsadv.2023.100487
Pasquale, L., Tavella, F., Longo, V., Favaro, M., Perathoner, S., Centi, G., Ampelli, C., Genovese, C. (2023). The Role of Substrate Surface Geometry in the PhotoElectrochemical Behavior of Supported TiO2 Nanotube Arrays: A Study Using Electrochemical Impedance Spectroscopy (EIS). Molecules, 28, 3378. https://doi.org/10.3390/molecules28083378
Quitério, P., Apolinário, A., Sousa, C. T., Costa, J. D., Ventura, J., Araújo, J. P. (2015). The cyclic nature of porosity in anodic TiO2 nanotube arrays. Journal of Materials Chemistry A, 3(7), 3692-3698. https://doi.org/10.1039/c4ta04607b
Sarngan, P. P., Lakshmanan, A., Sarkar, D. (2022). Influence of Anatase-Rutile Ratio on Band Edge Position and Defect States of TiO2 Homojunction Catalyst. Chemosphere, 286 (Part 2), 131692. https://doi.org/10.1016/j.chemosphere.2021.131692.
Sanoja-López, K. A., Loor-Molina, N. S., Luque, R. (2024). An overview of photocatalyst ecodesign and development for green hydrogen production. Catalysis Communications, 106859. https://doi.org/10.1016/j.catcom.2024.106859
Suhadolnik, L., Marinko, Ž., Ponikvar-Svet, M., Tavčar, G., Kovač, J., & Čeh, M. (2020). Influence of Anodization-Electrolyte Aging on the Photocatalytic Activity of TiO2 Nanotube Arrays. Journal of Physical Chemistry C, 124(7), 4073-4080. https://doi.org/10.1021/acs.jpcc.9b09522
Thakur, N., Thakur, N., Kumar, A., Thakur, V. K., Kalia, S., Arya, V., Kumar, A., Kumar, S., Kyzas, G. Z. (2024). A critical review on the recent trends of photocatalytic, antibacterial, antioxidant and nanohybrid applications of anatase and rutile TiO2 nanoparticles. Science of The Total Environment, 914, 169815. https://doi.org/10.1016/j.scitotenv.2023.169815
Yu, H., Li, S., Peng, S., Yu, Z., Chen, F., Liu, X., Guo, J., Zhu, B., Huang, W., Zhang, S. (2023). Construction of rutile/anatase TiO2 homojunction and metal-support interaction in Au/TiO2 for visible photocatalytic water splitting and degradation of methylene blue. International Journal of Hydrogen Energy, 48(3), 975-990. https://doi.org/10.1016/j.ijhydene.2022.10.010
Zhou, L., Liang, C., Wang, H. (2019). Corrosion resistance and biological properties of anatase and rutile coatings on titanium surface. Chemistry Letters, 48, 1355-1357. https://doi.org/10.1246/cl.190549
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright (c) 2024 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales