Abstract
In this paper, we present a condensed summary on the onset of the study of light in Antioquia and how it has prevailed until today. We highlight the contributions of Prof. Dr. Peter Barlai since he arrived from Austria in the early seventies, and how he laid the basis for the establishment of the optics groups of the two leading Universities of Antioquia. In addition, we explain the involvement of national and international institutes in the formation of the optics groups of Antioquia, as well as the link between the original onset of the study of light and the current interest of the leading groups. © 2015. Acad. Colomb. Cienc. Ex. Fis. Nat. All rights reserved.Garzón, J., Gharbi, T., & Meneses, J.(2008). Real TimeDetermination of the Optical Thickness and Topographyof Tissues by Chromatic Confocal Microscopy. Journal ofOptics A: Pure and Applied Optics,10(10): 104028. http://stacks.iop.org/1464-4258/10/i=10/a=104028.Henao, R., Medina, F., Rabal, H., & Trivi, M.(1993). Three-Dimensional Speckle Measurements with a DiffractionGrating. Applied Optics,32(5). OSA, 726-29. doi:10.1364/AO.32.000726.Henao, R, Rabal, H., Tagliaferri, A., & Torroba, R.(1997).Determination of the Zero-Order Fringe Position in DigitalSpeckle Pattern Interferometry. Applied Optics,36(10).OSA, 2066–69. doi:10.1364/AO.36.002066.Hincapie, D., Herrera-Ramirez J., & Garcia-Sucerquia, J.(2015). Single-Shot Speckle Reduction in NumericalReconstruction of Digitally Recorded Holograms. OpticsLetters,40(8). OSA, 1623–26. doi:10.1364/OL.40.001623.Kakarenko, K., Ducin, I., Grabowiecki,K., Jaroszewicz,Z., Kolodziejczyk, A., Mira-Agudelo, A., KrzysztofPetelczyc, Składowska, A., & Sypek, M.(2015).Assessment of Imaging with Extended Depth-of-Field byMeans of the Light Sword Lens in Terms of Visual AcuityScale. Biomedical Optics Express,6(5). OSA, 1738-48.doi:10.1364/BOE.6.001738.Londoño, N, Rueda,E.,Gómez,J., & Lencina, A.(2015).Generation of Optical Vortices by Using Binary VortexProducing Lenses. Applied Optics,54(4). OSA, 796-801.doi:10.1364/AO.54.000796.Matteucci, G., Medina, F. & Pozzi, G.(1992). Electron-OpticalAnalysis of the Electrostatic Aharonov-Bohm Effect.Ultramicroscopy,41(4): 255-68. doi:10.1016/0304-3991(92)90205-X.Medina, F., & Pozzi, G.(1990). Spatial Coherence of Anisotropicand Astigmatic Sources in Interference Electron Microscopyand Holography. Journal of the Optical Society of AmericaA,7(6). OSA, 1027-33. doi:10.1364/JOSAA.7.001027.Medina, F., Garcia-Sucerquia, J., Castañeda, R.,&Matteucci,G.(2004).Angular Criterion to Distinguish betweenFraunhofer and Fresnel Diffraction. Optik - InternationalJournal for Light and Electron Optics,115(11-12): 547-52.doi:10.1078/0030-4026-00547.Mendoza-Yero, O., Calabuig, A., Tajahuerce, E., Lancis, J.,Andrés, P.,&Garcia-Sucerquia, J.(2013).FemtosecondDigital Lensless Holographic Microscopy to ImageBiological Samples.Optics Letters,38(17).OSA, 3205-7.Mendoza-Yero, O., Tajahuerce, E., Lancis, J.,&Garcia-Sucerquia, J.(2013). Diffractive Digital Lensless Holo-graphic Microscopy with Fine Spectral Tuning.OpticsLetters,38(12): 2107-9.Reyes-Vera, E, Torres, P., Chesini, G.,&Cordeiro, C.(2012).Temperature Sensitivity of Photonic Crystal Fiber withIntegrated Electrodes. In Press Opt Express,.Reyes-Vera, E., Gómez-Cardona, N., Chesini, G, Cordeiro,C., & Torres, P.(2014). Temperature Sensibility of theBirefringence Properties in Side-Hole Photonic CrystalFiber Filled with Indium. Applied Physics Letters,105(20): -. doi:http://dx.doi.org/10.1063/1.4902157.Rueda, E, Muñetón, D.,Gómez,J., & Lencina, A.(2013).High-Quality Optical Vortex-Beam Generation by Using aMultilevel Vortex-Producing Lens.Optics Letters,38(19).OSA, 3941–44. doi:10.1364/OL.38.003941.Sánchez-Ortiga, E., Doblas, A., Saavedra, G., Martínez-Corral, M,&Garcia-Sucerquia, J.(2014). Microscopio,Método Y Programa de Ordenador Para La Obtención deImágenes Cuantitativas de Fase Por Medio de MicroscopíaHolográfica Digital, Y Kit Para Adaptar Un MicroscopioÓptico. España: Oficna Española de Patentes.Sánchez-Ortiga, E., Doblas, A., Saavedra, G., Martínez-Corral,M.&Garcia-Sucerquia, J.(2014).Off-Axis DigitalHolographic Microscopy: Practical Design Parameters forOperating at Diffraction Limit. Applied Optics,53(10).OSA, 2058-66. doi:10.1364/ao.53.002058.Serna, J., Hamad, A., Garcia, H., & Rueda, E.(2014).Measurement of Nonlinear Optical Absorption and Non-Linear Optical Refraction in CdS and ZnSe Using anElectrically Focus-Tunable Lens. In 12th InternationalConference on Fiber Optics and Photonics, T2C.2. OSATechnical Digest (online). Kharagpur : Optical Society ofAmerica. doi:10.1364/PHOTONICS.2014.T2C.2.Sierra-Sosa, D., Angel-Toro, L., Bolognini, N.,&Tebaldi, M.(2013).Novel Vortex-Transform for High FrequencyModulated Patterns. Optics Express,21(20).OSA, 23706-11. doi:10.1364/OE.21.023706.Torres, P., Aristizábal, V., & Andrés, M.(2011). Modeling ofPhotonic Crystal Fibers from the Scalar Wave Equation witha Purely Transverse Linearly Polarized Vector Potential. J.Opt. Soc. Am. B,28(4). OSA, 787-91. http://josab.osa.org/abstract.cfm?URI=josab-28-4-787.Torroba, R., Henao, R., & Carletti, C.(1996). DigitalPolarization-Encoding Technique for Optical LogicOperations. Optics Letters,21(23). OSA, 1918-20.doi:10.1364/OL.21.001918.Velásquez, D.,&Garcia-Sucerquia, J.(2006). Three-Dimensional Surface Contouring of Macroscopic Objectsby Means of Phase-Difference Images.Applied Optics,45(25): 6381-87.
References
Angel-Toro, L. Sierra-Sosa, D., Tebaldi, M., & Bolognini, N. (2012). Vortex Metrology Using Fourier Analysis Techniques: Vortex Networks Correlation Fringes. Applied Optics, 51 (30). OSA, 7411-19. doi:10.1364/AO.51.007411.
Angel-Toro, L. Sierra-Sosa, D., Tebaldi, M., & Bolognini, N. (2013). In-Plane Displacement Measurement in Vortex Metrology by Synthetic Network Correlation Fringes. Journal of the Optical Society of America A, 30 (3). OSA, 462-69. doi:10.1364/JOSAA.30.000462.
Barlai, P. (1971)a). Holographic Reconstruction without Granularity. Naturforsch, 26 1, 1441.Barlai, P. (1971)b). Information Processing by Holograms. Kybernetik, 2: 78.
Barlai, P. (1971)c). Quantum Theory of Diffraction. Angeu Phys, 31: 82.Barlai, P. (1972)a). Hologramme Mit Nichtspharischer Reférenzwelle Im Inkoharenten Strahlungsfeld. Z. Naturforsch, 27a: 1777-83.
Barlai, P. (1972)b). Phasenhologramme in Photographischen Emulsionen Mit Hohem Wirkungsgrad Im Blaugriinen Spektralbereich. Z. Naturforsch, 27a: 544.
Barlai, P. (1973)a). Higher-Order Coherence in Optics. Naturforsch, 28a.
Barlai, P. (1973)b). Koharenz Hoherer Ordnung in Der Optik Und Ihre MeBbarkeit. Z. Naturforsch, 28a: 19461950.Barrera, J., Mira, A., & Torroba, R. (2013). Optical Encryption and QR Codes: Secure and Noise-Free Information Retrieval. Optics Express, 21 (5). OSA, 5373-78. doi:10. 1364/OE.21.005373.
Barrera, J., Tebaldi, M., Ríos, C., Rueda, E., Bolognini, N., & Torroba, R. (2012). Experimental Multiplexing of Encrypted Movies Using a JTC Architecture. Optics Express, 20 (4). OSA, 3388-93. doi:10.1364/OE.20.003388.
Barrera, J., Vélez, A., & Torroba, R. (2014). Experimental Scrambling and Noise Reduction Applied to the Optical Encryption of QR Codes. Optics Express, 22 (17). OSA, 20268-77. doi:10.1364/OE.22.020268.
Barrera, J., & Torroba, R. (2009). Efficient Encrypting Procedure Using Amplitude and Phase as Independent Channels to Display Decoy Objects. Applied Optics, 48 (17). OSA, 3120-28. doi:10.1364/AO.48.003120.
Castañeda, R, & Medina, F. (1999). Moiré Patterns in Spatially Partial Coherent Interference with Non-Regular Gratings. Optik, 110 (3). Elsevier, 123-26.Castañeda, R. (2014). Electromagnetic Wave Fields in the Microdiffraction Domain. Physical Review A, 89 (1). American Physical Society, 13843. http://link.aps.org/doi/10.1103/PhysRevA.89.013843.
Castañeda, R, Garcia-Sucerquia, J., Henao, R., & Trabocchi. O. (2001). Information Encryption through Dyadic Permutations. Optics and Lasers in Engineering, 36 (6): 537-44. doi:10.1016/S0143-8166(01)00079-3.
Check out the Top Cited Articles in Applied Optics. (2013). Optical Society of America.http://www.medellin.unal.edu.co/boletines/images/Top_Cited_Articles_from_Applied_Optics_2014.pdf.
Doblas, A., Hincapie-Zuluaga, D., Saavedra, G., Martínez-Corral, M., & Garcia-Sucerquia. J. (2015). Physical Compensation of Phase Curvature in Digital Holographic Microscopy by Use of Programmable Liquid Lens. Applied Optics, 54 (16). OSA, 5229-33. doi:10.1364/AO.54.005229.
Doblas, A., Sánchez-Ortiga, E., Martínez-Corral, M., &Garcia-Sucerquia, J. (2015). Study of Spatial Lateral Resolution in off-Axis Digital Holographic Microscopy. Optics Communications, 352 (October), 63-69. doi:10. 1016/j.optcom.2015.04.066.
Garcia-Sucerquia, J., Trujillo, C., & Restrepo, J. (2014). Microscopio Holográfico Digital Sin Lentes (MHDSL) Y Método Para Visualizar Muestras. Colombia: SIC (Colombia).
Garcia-Sucerquia, J. (2012). Color Lensless Digital Holographic Microscopy with Micrometer Resolution. Optics Letters, 37 (10), 1724-26. doi:10.1364/OL.37.001724.Garcia-Sucerquia, J, Medina, F., & Matteucci, G. (2004). Optical Tubular Structures Produced by Diffraction of Circular Apertures. Optics and Lasers in Engineering, 42 (1): 61-70. doi:10.1016/S0143-8166(03)00077-0.
Garcia-Sucerquia, J., Herrera-Ramírez, J., & Velásquez, D. (2005). Reduction of Speckle Noise in Digital Holography by Using Digital Image Processing. Optik - International Journal for Light and Electron Optics, 116 (1): 44-48. doi:10.1016/j.ijleo.2004.12.004.
Garcia-Sucerquia, J., Xu, W., Jericho, S., Klages, P., Jericho, M., & Kreuzer, H. (2006). Digital in-Line Holographic Microscopy. Appl. Opt., 45 (5). OSA, 836-50.
Garzón, J., Gharbi, T., & Meneses, J. (2008). Real Time Determination of the Optical Thickness and Topography of Tissues by Chromatic Confocal Microscopy. Journal of Optics A: Pure and Applied Optics, 10 (10): 104028. http://stacks.iop.org/1464-4258/10/i=10/a=104028.
Henao, R., Medina, F., Rabal, H., & Trivi, M. (1993). Three-Dimensional Speckle Measurements with a Diffraction Grating. Applied Optics, 32 (5). OSA, 726-29. doi:10.1364/AO.32.000726.
Henao, R, Rabal, H., Tagliaferri, A., & Torroba, R. (1997). Determination of the Zero-Order Fringe Position in Digital Speckle Pattern Interferometry. Applied Optics, 36 (10). OSA, 2066–69. doi:10.1364/AO.36.002066.
Hincapie, D., Herrera-Ramirez J., & Garcia-Sucerquia, J. (2015). Single-Shot Speckle Reduction in Numerical Reconstruction of Digitally Recorded Holograms. Optics Letters, 40 (8). OSA, 1623–26. doi:10.1364/OL.40.001623.
Kakarenko, K., Ducin, I., Grabowiecki,K., Jaroszewicz, Z., Kolodziejczyk, A., Mira-Agudelo, A., Krzysztof Petelczyc, Składowska, A., & Sypek, M. (2015). Assessment of Imaging with Extended Depth-of-Field by Means of the Light Sword Lens in Terms of Visual Acuity Scale. Biomedical Optics Express, 6 (5). OSA, 1738-48. doi:10.1364/BOE.6.001738.
Londoño, N, Rueda,E., Gómez, J., & Lencina, A. (2015). Generation of Optical Vortices by Using Binary Vortex Producing Lenses. Applied Optics, 54 (4). OSA, 796-801. doi:10.1364/AO.54.000796.
Matteucci, G., Medina, F. & Pozzi, G. (1992). Electron-Optical Analysis of the Electrostatic Aharonov-Bohm Effect. Ultramicroscopy, 41 (4): 255-68. doi:10.1016/0304-3991(92) 90205-X.
Medina, F., & Pozzi, G. (1990). Spatial Coherence of Anisotropic and Astigmatic Sources in Interference Electron Microscopy and Holography. Journal of the Optical Society of America A, 7 (6). OSA, 1027-33. doi:10.1364/JOSAA.7.001027.
Medina, F., Garcia-Sucerquia, J., Castañeda, R., & Matteucci, G. (2004). Angular Criterion to Distinguish between Fraunhofer and Fresnel Diffraction. Optik - International Journal for Light and Electron Optics, 115 (11-12): 547-52. doi:10.1078/0030-4026-00547.
Mendoza-Yero, O., Calabuig, A., Tajahuerce, E., Lancis, J., Andrés, P., & Garcia-Sucerquia, J. (2013). Femtosecond Digital Lensless Holographic Microscopy to Image Biological Samples. Optics Letters, 38 (17). OSA, 3205-7.
Mendoza-Yero, O., Tajahuerce, E., Lancis, J., & Garcia-Sucerquia, J. (2013). Diffractive Digital Lensless Holo-graphic Microscopy with Fine Spectral Tuning. Optics Letters, 38 (12): 2107-9.
Reyes-Vera, E, Torres, P., Chesini, G., & Cordeiro, C. (2012). Temperature Sensitivity of Photonic Crystal Fiber with Integrated Electrodes. In Press Opt Express,.
Reyes-Vera, E., Gómez-Cardona, N., Chesini, G, Cordeiro, C., & Torres, P. (2014). Temperature Sensibility of the Birefringence Properties in Side-Hole Photonic Crystal Fiber Filled with Indium. Applied Physics Letters, 105 (20): -. doi:http://dx.doi.org/10.1063/1.4902157.
Rueda, E, Muñetón, D., Gómez, J., & Lencina, A. (2013). High-Quality Optical Vortex-Beam Generation by Using a Multilevel Vortex-Producing Lens. Optics Letters, 38 (19). OSA, 3941–44. doi:10.1364/OL.38.003941.
Sánchez-Ortiga, E., Doblas, A., Saavedra, G., Martínez-Corral, M, & Garcia-Sucerquia, J. (2014). Microscopio, Método Y Programa de Ordenador Para La Obtención de Imágenes Cuantitativas de Fase Por Medio de Microscopía Holográfica Digital, Y Kit Para Adaptar Un Microscopio Óptico. España: Oficna Española de Patentes.Sánchez-Ortiga, E., Doblas, A., Saavedra, G., Martínez-Corral, M. & Garcia-Sucerquia, J. (2014). Off-Axis Digital Holographic Microscopy: Practical Design Parameters for Operating at Diffraction Limit. Applied Optics, 53 (10). OSA, 2058-66. doi:10.1364/ao.53.002058.
Serna, J., Hamad, A., Garcia, H., & Rueda, E. (2014). Measurement of Nonlinear Optical Absorption and Non-Linear Optical Refraction in CdS and ZnSe Using an Electrically Focus-Tunable Lens. In 12th International Conference on Fiber Optics and Photonics, T2C.2. OSA Technical Digest (online). Kharagpur : Optical Society of America. doi:10.1364/PHOTONICS.2014.T2C.2.
Sierra-Sosa, D., Angel-Toro, L., Bolognini, N., & Tebaldi, M. (2013). Novel Vortex-Transform for High Frequency Modulated Patterns. Optics Express, 21 (20). OSA, 23706-11. doi:10.1364/OE.21.023706.
Torres, P., Aristizábal, V., & Andrés, M. (2011). Modeling of Photonic Crystal Fibers from the Scalar Wave Equation with a Purely Transverse Linearly Polarized Vector Potential. J. Opt. Soc. Am. B, 28 (4). OSA, 787-91. http://josab.osa.org/abstract.cfm?URI=josab-28-4-787.
Torroba, R., Henao, R., & Carletti, C. (1996). Digital Polarization-Encoding Technique for Optical Logic Operations. Optics Letters, 21 (23). OSA, 1918-20. doi:10.1364/OL.21.001918.Velásquez, D., & Garcia-Sucerquia, J. (2006). Three-Dimensional Surface Contouring of Macroscopic Objects by Means of Phase-Difference Images. Applied Optics, 45 (25): 6381-87.
Declaration of originality and transfer author's rights
The authors declare:
- The published data and reference materials have been duly identified with their respective credits and have been included in the bibliographic notes and citations that have been so identified and that should it be required, I have all releases and permissions from any copyrighted material.
- All material presented is free from any copyright and that I accept full legal responsibility for any legal claims relating to copyrighted intellectual property, fully exonerating from responsibility the Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales.
- This work is unpublished and will not be sent to any other journal while waiting for the editorial decision of this journal. I declare that there is no conflict of interest in this manuscript.
- In case of publication of this article, all author´s rights are transferred to the Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, and so cannot be reproduced in any form without the express permission of it.
- By means of this document, if the article is accepted for publication by the Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, the Revista assumes the right to edit and publish the articles in national and international indices or data bases for academic and scientific use in paper, electronic, CD-ROM, internet form either of the complete text or any other known form known or to be known and non-commercial, respecting the rights of the authors.
Transfer of author rights
In case the article is approved for publication, the main author in representation of himself and his co-authors or the main author and his co-authors must cede the author rights of the corresponding article to the Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, except in the following cases:
The authors and co-authors will retain the right to revise, adapt, prepare derived works, oral presentations, and distribution to some colleagues of reprints of their own published work, if the corresponding credit is given to the Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales. It is also permissible to publish the title of the work, summary, tables, and figures of the work in the corresponding web sites of the authors or their employers, also giving credit to the Revista.
If the work has been realized under contract, the author’s employer has the right to revise, adapt, prepare derivative works, reproduce, or distribute in hard copy the published work, in a secure manner and for the exclusive use of his employees.
If the Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales were approached for permission by a third party for using, printing, or publishing specifically articles already published, the Revista must obtain the express permission of the author and co-authors of the work or of the employer except for use in classrooms, libraries, or reprinted in a collective work. The Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales reserves the possible use in its front cover of figures submitted with the manuscripts.
No other right, other than the author’s right, can be claimed by the Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales.