Abstract
The analysis of the mineral matter contributes meaningfully to define the quality of coal. In this work we present the results of identification and quantification of mineral phases presented in samples of natural coal, and coal fractions beneficiated with concentration fractions of minerai matter, obtained by different separation methods using Rietveld-based X-ray diffraction (Rietveld based XRD), s'Fe transmission Mössbauer spec- troscopy (MS) and scanning electron microscopy with energy dispersive X-Ray (SEM EDX) analysis, which allows to identité the potential for removal of minerals. Furthermore, it is possible to explore the relationship between the ash obtained, the melting point, the calorific value and the relative proportions of the individual minerals in the samples studied. Similarly, using the information obtained, we evaluate the technological, envi- ronmental and economic impacts associated with minerai matter.
References
ACAA, 2013. www.acaa-usa.org.
Alpern, B., Lemos de Sousa, M. J., 2002. Documented international enquiry on solid sedimentary fossil fuels; coal: definitions, classifications, reserves resources, and energy potential. Int. J. Coal Geol., 50, 3 - 41.
ASTM, 2007 ASTM D1506-99. Standard Test Methods for Carbon Black Ash Content.
Clemens, A. H., Deely, J. M., Gong D., Moore T. A., Shearer J. C., 2000. Partitioning behaviour of some toxic trace elements during coat combustion the influence of events occurring during the deposition stage. Fue1 79, 178 I — 1784.
Finkelman, R. B., 1995. The Need for Enhanced Coal Quality Databases. Eight International Conference on Coa1 Science, Volume I, Oviedo, Spain. Elsevier Science, 75— 78.
Finkelman, R. B., Gross, P. M. K., 1999. The Types of Data Needed for Assessing the Environmental and Human Health Impacts of Coal. Int. J. Coal Geol., 40, 91-101.
Finkelman, R. B., Pierce, B. S., 2002. Coa1 Quality: Global Priorities. Proc. 27th International Technical Conference on Coal Utilization & Fuel Systems, Clearwater, Florida, USA, Coal Technology Association, Gaithersburg, Volume II, 667-668.
Gracia, M., Marco J. F., Gancedo J. R., 1999. Uses and perspectives of Mössbauer spectroscopic studies of iron minerals in coal. Hyperf. Int., 122, 97-114.
Mandile, A. J., Hutton A. C., 1995. Quantitative X-ray diffraction analysis of mineral and organic phases in organic-rich rocks. Int. J. Coal Geol., 28, 51-69.
Reyes Caballero, F., Pérez Alcázar G. A., Barraza, J. M., Bohórquez, A., Tabares, J. A., 2003. Quantification of Pyritic Sulfur of the Colombian Coal by Mössbauer spectroscopy. Hyperf. Int., 148/149, 31- 38.
Reyes Caballero, F., 2005. Tesis Doctoral. Universidad del Valle, Cali- Colombia.
Reyes Caballero, F., Martinez Ovalle S. A., 2013. Mossbauer study of the inorganic sulfur removal from coals. Hyperf. Int., DOI 10.1007/ s10751-013-0874-x.
Stevens, J. D., Khasanov, A. M., Miller, ã. W., Pollak, H., Li, Z., 1998. Mossbauer Mineral Handbook. Baltimore Press, North Carolina, USA.
Tascón, J. M. D., Vassilev, S. V., 2000. La materia mineral del carbón: mé- todos de caracterización. Memorias V Congreso Nacional de Ciencia y Tecnología del carbón, Valledupar, Colombia, 19 — 23.
Vassilev, S. Y., Eskenazy, G. M., Vassileva, C. G., 2001. Behaviour of elements and minerals during preparation and combustion of the Pernik coal, Bulgaria. Fuel Proc. Tech., 72, 103 — 129.
Ward, C. R., 2002. Analysis and significance of mineral matter in coal seams. Int. J. CoaI Geol., 50, 135-168.
WCA, 2013. www.worldcoal.org.
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.