Morphological and structural analysis of ceramic materials composite by Kaolinite and Alumina
PDF

How to Cite

Guzmán, A., Landinez Téllez, D., Roa-Rojas, J., & Fajardo, F. (2024). Morphological and structural analysis of ceramic materials composite by Kaolinite and Alumina . Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 37(Suplemento), 50–54. https://doi.org/10.18257/raccefyn.2584

Downloads

Download data is not yet available.

Métricas Alternativas


Dimensions

Abstract

In this work, we report the preparation, structural and electrical characterization, morphological analysis and hardness measurements of ceramic materials composed of kaolinite Al2(Si2O5(OH)4 and alumina AL2O3. Samples were prepared from mixtures of precursor oxides starting with 100% alumina and increased the kaolinite concentration on steps of 10% up to complete 100% of kaolinite. The samples were sintered by the method of solid state reaction at temperatures of 1150, 1250 and 1350 °C. We found that the alumina samples are stable at the different temperatures of synthesis. The samples of kaolinite at 100% suffer a change phase depending on the sinterization temperature, noting that at 1350 °C yields 87% mullite and 13% cristobalite. The presence of quartz was only detected in samples with 100% kaolinite for sinterization temperatures of 1150 and 1250 °C. All samples with a mixture of alumina and kaolinite showed the presence of mullite, which is increased when the content of kaolínite is high or when the sinterization temperature is increased. This allows us to infer that the introduction of alumina optimizes the process of mullite formation hy their reaction with the SiO2 that remainder from the kaolinite. The sample with 100% alumina has a Mohs hardness of about 5, and this is increased with the content of kaolinite, until a Mohs hardness of about 6 to the sample with 100% kaolinite. The dielectric constant of these materials is around 27.82.

https://doi.org/10.18257/raccefyn.2584

Keywords

Ceramics | kaolinite | mullite | alumina
PDF

References

Aksay, L. Dabbs, D. 1991. Mullite for Structural, Electronic, and Optical Applications. J. Am. Ceram. Soc., 74 (10): 2343-2358.

Burgos, O. 2008. Síntesis y Procesamiento Coloidal de Nanocompuestos de Alúmina-Mullita. Tesis Doctoral, Instituto de Cerámica y Vidrio (CSIC), Madrid, Universidad Autónoma de Madrid.

Carty, W. 1998. Porcelain—Raw Materials, Processing, Phase Evolution, and Mechanical Behavior, J. Am. Ceram. Soc., 81 (1): 3-20.

Chen, C. Lan, G. 2000. Preparation of mullite by the reaction sintering of kaolinite and alumina. Eur. Ceram. Soc., 20 (14-15): 2519-2525.

Heimann, R. 2010. Classic and Advanced Ceramics, 1st ed, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany.

Meng, B. Peng, J. 2013. Effects of in Situ Synthesized Mullite Whiskers on Flexural Strength and Fracture Toughness of Corundum-Mullite Refractory Materials, Ceramics International, 39 (2): 1525-1531.

Rossini, A. Arazi, S. 1970. Mullitización de Mezclas de Arcilla Caolinitica e Hidróxido de Aluminio. Boletín de la Sociedad Española de Cerámica, 5, 579-591.

Schneider, H. Schreuer, J. Hildman, B. 2008. Structure and properties of mullite. Eur. Ceram. Soc., 28 (2): 329-344.

Torres, J. Mejía, R. 2007. Influencia de la Composición Mineralógica de los Caolines Sobre el Desempeño de Morteros Adicionados con MK. DYNA, Revista Universidad Nacional, 74 (153): 61-67.

Torres, J. Castelló, R. 2011. Análisis Comparativo de Caolines de Diferentes Fuentes para la Producción de Metacaolín. Revista Latinoamericana de Metalurgia y Materiales, 31 (1): 35-43.

Weber, B. Thompson, W. 1957. Ceramic Crucible for Melting Titanium. J. Am. Ceram. Soc. 40 (11): 363-373.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2024 https://creativecommons.org/licenses/by-nc-nd/4.0