The influence of pressure on the structural and electronic properties of Bi
PDF

How to Cite

Abdel Rahim, G. P., Rodríguez Martínez, J. A., & Moreno-Armenta, M. G. (2024). The influence of pressure on the structural and electronic properties of Bi . Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 37(Suplemento), 40–43. https://doi.org/10.18257/raccefyn.2582

Downloads

Download data is not yet available.

Métricas Alternativas


Dimensions

Abstract

Calculation of the structural and electronic properties of Bi was carried out in the framework of density functio- nal theory (DFT). The graphs of energy vs. volume for some possible structures show that the most stable one is the rhombohedral; the others are metastable. We also found two phase transitions induced by pressure. The most important result of this research is the prediction about the existence of FCC structure of Bi at higher pres- sures than ~3GPa. The electronic properties for the rhombohedral structure show that our calculations are in overall good agreement with other calculations. This agreement serves o validate the pseudo Bi.pbe-dn-kjpaw. UPF. Therefore, the above-mentioned is suitable for use in future calculations.

https://doi.org/10.18257/raccefyn.2582

Keywords

Bismuth | structural and electronic properties | wien2k | quantum-espresso | rhombohedral structure
PDF

References

Ph. Hofmann, 2006. The surfaces of bismuth: Structural and electronic properties, Progress in Surface Science, 81, DOI:10.1016.progsurf-2006.03.001

Bernadette Landschreiber et al. 2013, Structural and thermoelectric properties of Bi-Sb nanoalloys prepared by mechanical alloying, Journal of Electronic Materials, DOI: 10.1007/511664-012-2455-1.

Y. Liu, R.E, Allen, 1995. Electronic structure of the semimetals Bi and Sb, Physical Review B 52 1566.

C. Laulhé, M. Cammarata, M. Servol, R.J. Dwayne Miller, M. Hada, and S. Ravy, 2013, Impact of laser on bismuth thin-films, Eur. Phys. J. Special Topics 222, 1277-1285, DOI: 10.1140/epjst/e2013-01922-0.

P. Blaha, K. Schwarz, and J. Luitz, WIEN2k, A Full Potential Linearized Augmented Plane Wave Package for Calculating Crystal Properties (Karlheinz Schwarz, Techn. Universität Wien, Austria), 2001. ISBN 3-9501031-0-4.

P. Giannozzi, et al, 2009, Quantum espresso: a modular and open-source software for quantum simulations of materials, J.Phys.: Condens. Matter, 21, 395502, http://dx.doi.org/10.1088/0953-8984/21/39/395502

We used the pseudopotential Bi.pbe-dn-kjpaw.UPF from http://theossrv1.epfl.ch/Main/Links

P. Cucka and C. S, Barrett, 1962, The crystal structure of Bi and of solid solutions of Pb, Sn, Sb and Te in Bi, Acta Cryst. 15, 865-872 doi: 10.1107/50363110X62002297

J.P. Dismukes, R. J. Paff R. T. Smith, and R. Ulmer, 1968, Lattice Parameter density in bismuth-antimony alloys, J. Chem. Eng. Data 13, 317-320.

T. N. Kolobyanina, S. S. Kabalkina, L. F. Vereshchagin, A. Y. Michkov, and M. E Kachan, 1971, Soviet Physics JETP, 32(4), 624-629, http://www.jetp.ac.m/cgi-bin/dn/e_032_04_0624.pdf

J.P. Perdew, K. Burke, M. Ernzerhof, 1996, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 77, 3865.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2024 https://creativecommons.org/licenses/by-nc-nd/4.0