SPATIAL COHERENCE OF LIGHT IN THE PHASE-SPACE: NON-PARAXIAL PROCEDUNES AND PHYSICAL IMPLICATIONS
PDF (Español (España))

How to Cite

Castañeda, R. (2023). SPATIAL COHERENCE OF LIGHT IN THE PHASE-SPACE: NON-PARAXIAL PROCEDUNES AND PHYSICAL IMPLICATIONS. Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 37(142), 33–55. https://doi.org/10.18257/raccefyn.37(142).2013.2534

Downloads

Download data is not yet available.

Métricas Alternativas


Dimensions

Abstract

The phase-space representation of optical fields in any state of spatial coherence is a powerful tool for determining their non-paraxial propagation, without restrictions on propagation distance, source size and illuminated area at the detector plane. This procedure deals to novel phenomenological implications, the most important of which is the optical field modelling in terms of sets of radiant and virtual point sources. The set of radiant point sources must be discrete and the set of virtual point sources represents the spatial coherence state of the field. Furthermore, it suggests a novel approach between the classical optics and the quantum optics, dealing to new research subjects. For instance, it points out potential classical counterparts of light behaviours, usually characterised as exclusively quantum phenomena.

https://doi.org/10.18257/raccefyn.37(142).2013.2534

Keywords

marginal power spectrum | non-paraxial diffraction | phase-space representation
PDF (Español (España))

References

Young, T., The Bakerian lecture. Experiments and calculations relative to physical optics, Philosophical Transactions of the Royal Society of London 94 (1804) 1-16.

Grimaldo, F. M., Physico-Mathesis de Lumine Coloribus et Iride, Bononiae: Ex Typographia Haeredi Victorij Benatij, 1665.

Iizuka, K., Engineering Optics, Springer Verlag, Berlin, 1985. Sabra, A. I., The optics of ibn al-Haytham (2 Vols.), London, 1989. Castañeda, R., Un faro en la oscuridad, Cátedra abierta de Filosofía: Luces y Sombras en la Edad Media. Universidad de Antioquia, Abril de 2007.

Einstein, A., Zur Elektrodynamik bewegter Körper, Ann. Physik 17 (1905) 31.

Einstein, A., Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt, Ann. Physik 17 (1905) 17.

Eisberg, R y R. Resnick, Física Cuántica, Editorial Limusa, México, 1978 Mandel, L. and E. Wolf, Optical Coherence and Quantum Optics, Cambridge University Press, Oxford, 1995.

von Laue, M., Die Entropie von partiell kohärenten Strahlenbündeln, Ann. Physik 23 (1907) 1-43.

Van Cittert, P.H., Die wahrscheinliche Schwingungsverteilung in einer von einer Lichtquelle direkt oder mittels einer Linse beleuchteten Ebene, Physica 1 (1934) 201-210.

Zernike, F., The concept of Degree of Coherence and its application to optical problems. Physica 5 (1938) 785-795.

Hanbury-Brown R. and R. Twiss, Correlation between photons in two coherent beams of light, Nature 177 (1956) 27-29.

Svelto, O. and D.C. Hanna, Principles of lasers, Heyden, London, 1976. Padula, S., HBT interferometry: historical perspective, Braz. J. Phys. 35(2005) 70-99.

Glauber, R. J., The quantum theory of Optical Coherence, Phys. Rev. 130(1963) 2529-2539.

Castañeda, R., The Optics of Spatial Coherence Wavelets. In Peter W. Hawkes, editor: Advances in Imaging and Electron Physics, Vol. 164, Burlington: Academic Press (2010) 29-255.

Born, M. and E. Wolf, Principles of Optics 6th ed, Pergamon Press, Oxford, 1993.

Goodman, J. W., Introduction to Fourier Optics, McGraw-Hill, New York, 1968.

Castañeda, R. and J. Garcia-Sucerquia, Non-approximated numerical modelling of propagation of light in any state of spatial coherence, Opt. Express 19 (2011) 25022-25034.

Torre, A., Linear ray and wave optics in the phase-space, Elsevier, Amsterdam, 2005.

Castañeda, R., H. Muñoz-Ossa and G. Cañas-Cardona, The structured spatial coherence support, J. Mod. Opt. 58 (2011) 962-972.

Castañeda, R., G. Cañas-Cardona and J. Garcia-Sucerquia, Radiant, virtual, and dual sources of optical fields in any state of spatial coherence, J. Opt. Soc. Am. A 27 (2010) 1322-1330.

Castañeda, R., G. Cañas, and H. Vinck-Posada. Analogies between classical scalar wave fields in any state of spatial coherence and some quantum states of light. J. Opt. Soc. Am. A 29 (2012) 463-472.

Castañeda, R., G. Cañas-Cardona, J. González-Toro, H. Vinck-Posada. Classical modelling of the fourth-order spatial coherence state of scalar wave-fields. 22nd Congress of the International Commission for Optics: Light for the Development of the World, edited by Ramón Rodríguez-Vera, Rufino Díaz-Uribe, Proc. of SPIE Vol. 8011 (2011)80116F-1, 80116F-10.

Leonhardt, U., Measuring the quantum state of light, Cambridge University Press, 1997.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2023 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales