Abstract
The experimental studies of the type Ia supernovae and of the cosmic microwave background radiation have shown the recent accelerated expansion of the Universe. To explain this behavior, a hypothetical form of energy called the dark energy was introduced. On the other hand, the presence of a cosmological constant in the field equations causes an accelerated expansion of the Universe; thus, the latter is identified with the dark energy. Moreover, the energy of the vacuum state exhibits the same consequences of a cosmological constant; therefore, the experimental value of the vacuum energy must contribute to the experimental value of the cosmological constant, and both values must have the same order of magnitude. However, when the two values are compared, there exists a difference of more than 55 orders of magnitude. In order to establish concordance, it is necessary to do a fine-tuning in the experimental value of the cosmological constant. The impossibility to avoid this fine-tuning is called the old cosmological constant problem. Many solutions have been raised, such as the replacement of the cosmological constant by a scalar field; however, these solutions do not actually solve the problem. We will present an alternative solution, in which the cosmological constant is complemented by a new term originated from modifications of gravity. The modification is performed by introducing a function f(R, G), where R is the Ricci scalar and G is the Gauss-Bonnet invariant. The new term, which can be interpreted as a cosmic fluid with a particular form for its equation of state, evolves in time dynamically relaxing the enormous difference between the vacuum energy and the cosmological constant.
Keywords
References
Aad G. et. al., [ATLAS Collaboration], 2012. Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716, 1.
Abbot L., 1985. A mechanism for reducing the value of the cosmological constant, Phys. Lett. B 150, 427.
Antoniadis I. & Mottola E., 1992. 4-D quantum gravity in the conformal sector, Phys. Rev. D 45, 2013.
Armendariz-Picon C., Mukhanov V. & Steinhardt P. J., 2000. A dynamical solution to the problem of a small cosmological constant and late-time cosmic acceleration, Phys. Rev. Lett. 85, 4438.
Armsen M., 1977. A variational proof of the Gauss-Bonnet formula, Manuscripta. Math. 20, 245.
Barr S., 1987. An attempt at a classical cancellation of the cosmological constant, Phys. Rev. D 36, 1691.
Barr S. & Hochberg D., 1988. Dynamical adjustment of the cosmological constant, Phys. Lett. B 211, 49.
Bauer F., 2010. The cosmological constant and the relaxed universe, J. Phys. Conf. Ser. 259, 012083.
Bauer F., Sola J. & Stefancic H., 2010a. Dynamically avoiding fine-tuning the cosmological constant: the “relaxed universe”, JCAP 1012, 029.
Bauer F., Sola J. & Stefancic H., 2010b. The relaxed universe: towards solving the cosmological constant problem dynamically from an effective action functional of gravity, Phys. Lett. B 688, 269.
Bauer F., Sola J. & Stefancic H., 2011. Relaxing a large cosmological constant in the astrophysical domain, Mod, Phys. Lett. A 26, 2556.
Beringer J. et. al. 2012. Review of Particle Physics (RPP), Phys. Rev. D 86, 010001.
Bressi G., Carugno G., Onofrio R. & Ruoso G., 2002. Measurement of the Cassimir force between parallel metallic surfaces, Phys. Rev. Lett. 88, 041804.
Bruneton J.-P. et. al., 2012. Fab Four: when John and George play gravitation and cosmology, Adv. Astron. 2012, 430694.
Caldwell R. R., Dave R. & Steinhardt P. J., 1998. Cosmological imprint of an energy component with general equation of state, Phys. Rev. Lett. 80, 1582.
Carroll S., 2004. Spacetime and geometry: an introduction to general relativity, Addison Wesley, San Francisco, USA.
Casimir H. B. G., 1948. On the attraction between two perfectly conducting plates, Indag. Math. 10, 261.
Charmousis C., Copeland E. J., Padilla A. & Saffin P. M., 2012a. General second order scalar-tensor theory, self tuning, and the Fab Four, Phys. Rev. Lett. 108, 051101.
Charmousis C., Copeland E. J., Padilla A. & Saffin P. M., 2012b. Self-tuning and the derivation of the Fab Four, Phys. Rev. D 85, 104040.
Chatrchyan S. et. al., [CMS Collaboration], 2012. Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716, 30.
Cheng T.-P. & Li L.–F., 1984. Gauge theory of elementary particle physics, Clarendon Press, Oxford, UK.
Chern S.-S., 1945. On the curvatura integra in Riemannian manifold, Ann. of Math. 46, 674.
Copeland E. J., Padilla A. & Saffin P. M., 2012. The cosmology of the Fab-Four, JCAP 1212, 026.
Efstathiou G., Hobson M. P. & Lasenby A. N., 2006. General relativity: an introduction for physicists, Cambridge University Press, Cambridge, UK. Einstein A., 1917. Cosmological consideration in the general theory of relativity, Sitz. Preuss. Akad. Wiss. Berlin (Math.Phys.) 1917, 142.
Einstein A., 1922. The meaning of relativity, Taylor & Francis, London, UK.
Ford L. H., 1987. Cosmological damping by unstable scalar fields, Phys. Rev. D 35, 2339.
Jarosik N. et. al., 2011. Seven-year Wilkinson Microwave Anisotropy (WMAP) observations: sky maps, systematic errors and basic results, Astrophy. J. Suppl. Ser. 192, 14.
Kane G., 1993. Modern elementary particle physics, Addison-Wesley, Massachussets, USA.
Komatsu E. et. al., 2011. Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological interpretation, Astrophys. J. Suppl. Ser. 192, 18.
Larson D. et. al., 2011. Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: power spectra and WMAPderived parameters, Astrophys. J. Suppl. Ser. 192, 16.
Mohideen U. & Roy A., 1998. Precision measurement of the Casimir force from 0.1 to 0.9 μm, Phys. Rev. Lett. 81, 4549.
Nojiri S. & Odintsov S. D., 2005. Inhomegeneous equation of state of the universe: phantom era, future singularity and crossing the phantom barrier, Phys. Rev. D 72, 023003.
Padilla A., Saffin P. M. & Zhou S.-Y., 2010. Bi-galileon theory I: motivation and formulation, JHEP 1012, 031.
Padilla A., Saffin P. M. & Zhou S.-Y., 2011. Bi-galileon theory II: phenomenology, JHEP 1101, 099.
Peccei R. D., Sola J. & Wetterich C., 1987. Adjusting the cosmological constant dynamically: cosmons and new force weaker than gravity, Phys. Lett. B 195, 183.
Perlmutter S. et. al., 1999. Measurements of Ω and Λ from 42 high-redshift supernovae, Astrophys. J. 517, 565.
Riess A. G. et. al., 1998. Observational evidence from supernovae for an accelerating universe and a cosmological constant, Astron. J. 116, 1009.
Sola J., 1989. The cosmological constant and the fate of the cosmon in Weyl conformal gravity, Phys. Lett. B 228, 317.
Sola J., 2008. Dark energy: a quantum fossil from the inflationary universe?, J. Phys. A 41, 164066.
Sola J. & Shapiro I. L., 2002. Massive fields temper anomalyinduced inflation, Phys. Lett. B 530, 10.
Sotiriou T. P. & Faroni V., 2010. f(R) theories of the gravity, Rev. Mod. Phys. 82, 451.
Starobinsky A. A., 1980. A new type of isotropic cosmological models without singularity, Phys. Lett. B 91, 99.
Stefancic H, 2009. The solution of the cosmological constant problem from the inhomogeneous equation of state - a hint from modified gravity?, Phys. Lett. B 670, 246.
Weinberg S., 1972. Gravitation and cosmology: principles and applications of the general theory of relativity, John Wiley & Sons, New York, USA.
Weinberg S., 1989. The cosmological constant problem, Rev. Mod. Phys. 61, 1.
Weinberg S., 1995. The quantum theory of fields, Volume 2: modern applications, Cambridge University Press, Cambridge, UK.
Weinberg S., 1996. Theories of the cosmological constant, arXiv:astro-ph/9610044.
Weinberg S., 2008. Cosmology, Oxford University Press, Oxford, UK.
Yoo J. & Watanabe Y., 2012. Theoretical models of dark energy, Int. J. Mod. Phys. D 21, 1230002.
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright (c) 2023 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales