MICRORAMAN STUDY OF THE PYRITE AND CHALCOPYRITE SURFACE OXIDATION BY ACIDITHIOBACILLUS FERROOXIDANS
PDF (Español (España))

How to Cite

Márquez Godoy, M. A., Ospina Correa, J. D., Mejía Restrepo, E., & Morales Aramburo, Álvaro L. (2023). MICRORAMAN STUDY OF THE PYRITE AND CHALCOPYRITE SURFACE OXIDATION BY ACIDITHIOBACILLUS FERROOXIDANS. Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 36(141), 373–380. https://doi.org/10.18257/raccefyn.36(141).2012.2526

Downloads

Download data is not yet available.

Métricas Alternativas


Dimensions

Abstract

Polished sections of relatively pure samples of pyrite and chalcopyrite taken from San Antonio (Marmato, Caldas) and La Chorrera (Cisneros, Antioquia) gold mines, were bio-oxidized. The samples were treated using the Acidithiobacillus ferrooxidans strain ATCC 23270 and analyzed using Raman spectroscopy. Mineral coatings were detected on the bio treated sulphides. The results show that the  generation of coatings on the different sulphide minerals is quite dynamic and changing in time and more complex than reported results.

https://doi.org/10.18257/raccefyn.36(141).2012.2526

Keywords

chalcopyrite | pyrite | biooxidation | surface characterization | microRaman
PDF (Español (España))

References

Ahonnen, L., Hiltunen, P., Tuovinen, O.H. 1986. The role of pyrrhotite and pyrite in the bacterial leaching of chalcopyrite. Ebner, H.G. (Eds.), Fundamental and Applied Biohydrometallurgy. Elsevier, Amsterdam, 13–22.

Al-Harahsheh, M., Kingman, S., Rutten, F., Briggs, D. 2006. ToF-SIMS and SEM study on the preferential oxidation of chalcopyrite. International Journal of Mineral Processing 80: 2-4.

Bevilaqua, D., Leite, A.L.L.C., Garcia, Jr. O., Tuovinen, O.H. 2002. Oxidation of chalcopyrite by Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans in shake flasks. Process Biochemistry 38:587-592.

Blight, K., Ralph, D.E., Thurgate, S. 2000. Pyrite surfaces after bio-leaching: a mechanism for bio-oxidation. Hydrometallurgy 58: 227–237.

Curutchet, G., Tedesco, P., Donati, E. 1996. Combined degradation of covellite by Thiobacillus thiooxidans and Thiobacillus ferrooxidans. Biotechnology Letters 18: 1471-1476

Dopson, M., Lindström, E.B. 1999. Potential role of Thiobacillus caldus in arsenopyrite bioleaching. Appl. Environ. Microbiol. 65: 36-40.

Downs, R.T. 2006. The RRUFF Project: an integrated study of the chemistry, crystallography, Raman and infrared spectroscopy of minerals. Program and Abstracts of the 19th General Meeting of the International Mineralogical Association in Kobe, Japan. O03-13.

Dutrizac, J.E. 2008. Factors affecting the precipitation of potassium jarosite in sulfate and chloride media. Metallurgical and Materials Transactions B. 39: 771–783.

Fowler, T.A., Crundwell, F.K. 1999. Leaching of zinc sulfide by Thiobacillus ferrooxidans: bacterial oxidation of the sulfur product layer increases the rate of zinc sulfide dissolution at high concentrations of ferrous ions. Appl Environ Microbiol. 65(12): 5285-92.

Garcia, O., Bigham, J.M., Tuovinen, O.H. 1995. Oxidation galena by Thiobacillus ferrooxidans and Thiobacillus thiooxidans. Canadian Journal Microbiology 41: 508-514.

Garcia, O., Bigham, J.M., Tuovinen, O.H. 1995. Sphalerite oxidation by Thiobacillus ferrooxidans and Thiobacillus thiooxidans. Canadian Journal Microbiology 41: 578-584.

He, H., Xia, J.L., Hong, F.F., Tao, X.X., Leng, Y.W., Zhao, Y.D. 2012. Analysis of sulfur speciation on chalcopyrite surface bioleached with Acidithiobacillus ferrooxidans. Minerals Engineering, 27–28: 60–64

Laetsch, T., Downs, R.T. 2006. Software for identification and refinement of cell parameters from powder diffraction data of minerals using the RUFF Project and American Mineralogist Crystal Structure databases. Abstracts from the 19th General Meeting from the International Mineralogical Association, Kobe, Japan, 23-28 July 2006.

Liu, H., Gu, G., Xu, Y. 2011. Surface properties of pyrite in the course of bioleaching by pure culture of Acidithiobacillus ferrooxidans and a mixed culture of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans. Hydrometallurgy, 108: 143-148.

Márquez, M., Gaspar, J., Bessler, K.E., Magela, G. 2006. Process mineralogy of bacterial oxidized gold ore in São Bento Mine (Brasil). Hydrometallurgy, 83: 114-123.

Márquez, M.A. 1999. Mineralogia dos produtos de oxidação sob pressão e bacteriana do minério de ouro da mina São Bento - MG. Tesis de doctorado, Universidade de Brasília. 271 p.

Marsden, J., House, I. 1992. The chemistry of gold extraction. Ed. Ellis Horwood Limited, England.

McGuire, M.M., Banfield, J.F., Hamers, R.J. 2001. Quantitative determination of elemental sulfur at the arsenopyrite surface after oxidation by ferric iron: mechanistic implications. Geochem. Trans. 2001a. 2: 25.

Ossa, D.M., Márquez, M.A. 2010. Jarosite pseudomorph formation from arsenopyrite oxidation using Acidithiobacillus ferrooxidans. Hydrometallurgy, 104: 162-168

Parker, G.K., Woods, R., Hope, A.G. 2008. Raman investigation of chalcopyrite oxidation. Colloids and Surfaces A: Physicochem. Eng. Aspects. 318:60–16.

Rodríguez, Y., Ballester, A., Blázquez, M.L., González, F., Muñoz, J.A. 2003. New information on the pyrite bioleaching mechanism at low and high temperature. Hydrometallurgy 71: 37–46.

Sasaki, K., Nakamuta, Y., Hirajima, T. 2009. Raman characterization of secondary minerals formed during chalcopyrite leaching with Acidithiobacillus ferrooxidans. Hydrometallurgy 95: 153–158.

Sasaki, K., Tsunekawa, M., Ohtsuka, T., Konno, H. 1998. The role of sulfur-oxidizing bacteria Thiobacillus thiooxidans in pyrite weathering. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 133: 269-278

Smith, A.M.L., Hudson-Edwards, K.A., Dubbin, W.E., Wright, K. 2006. Dissolution of jarosite [KFe3(SO4)2(OH)6] at pH 2 and 8: Insights from batch experiments and computational modelling. Geochimica et Cosmochimica Acta 70: 608–621.

Welch, S.A., Kirste, D., Christy, A.G., Beavis, F.R., Beavis, S.G. 2008. Jarosite dissolution II—Reaction kinetics, stoichiometry and acid flux. Chemical Geology 254: 73-86.

Zapata, D.M., Márquez, M.A., Ossa, D.M. 2007. Sulphur product layer in sphalerite biooxidation: Evidences for a mechanism of formation. Advanced Materials Research. 20-21: 134–138.

Zhu, X.M., Li, J., Bodily, D.M., Wadsworth, M.E. 1993. Transpassive oxidation of pyrite. J. Electrochem. Soc. 140: 1927–1935.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2023 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales