Holography: origin, basic principle and applications of a revolutionary communication method in art and science
PDF

How to Cite

Matteucci, G. (2015). Holography: origin, basic principle and applications of a revolutionary communication method in art and science. Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 39, 11–19. https://doi.org/10.18257/raccefyn.251

Downloads

Download data is not yet available.

Métricas Alternativas


Dimensions

Abstract

History of human kind shows that man has developed various communication methods such as language, art, writing, photography, etc. The most revolutionary of these methods is holography, a completely new way to look at the world around us. Here we describe how art, writing and holography, that at a first hasty analysis might be considered different unrelated disciplines, have actually an interesting common background. This include the basic men’s need to transfer information as well as the contribution of a few important actors who developed the information transfer process. A short account is set of the origin and the working principle of holography against this multi-disciplinary framework. Although a large number of applications of holography has been devised, here only one example is reported to demonstrate the potential of electron holography to display pictorial maps of magnetic lines of force in matter. © 2015. Acad. Colomb. Cienc. Ex. Fis. Nat. All rights reserved.

 
https://doi.org/10.18257/raccefyn.251
PDF

References

Akashi, T., Takahashi, Y., Tanigaki, T., Shimakura, T., Kawasaki, T., Furutsu, T., Shinada, H., Muller, H., Haider, M., Osakabe, N., and Tonomura, A. 2015. Aberration corrected 1.2-MV cold field-emission trans-mission electron microscope with a sub-50-pm resolution. Appl. Phys. Lett. 106: 074101.

Dunin-Borkowski, R.E., Kasama, T., Wei, A., Tripp, S.L., Hÿtch, M.J., Snoeck, E., Harrison, R.J., Putnis, A. 2004. Off-axis electron holography of magnetic nanowires and chains, rings, and planar arrays of magnetic nanoparticles. Microscopy research and technique. Wiley Subscription Services, Inc., A Wiley Company. 64: 390-402.

Dunin-Borkoski, R.E., McCartney, M.R., Frankel, R.B., Bazylinski, D,A., Posfai, M., Buseck, P.R. 1998. Magnetic microstructure of magnetotactic bacteria by electron holography. Science. 282: 1868-1870.

Gabor, D. 1948. A new microscopic principle. Nature. 161: 181-183.Harada, K., Tonomura, A., Matsuda, T., Akashi, T., Togawa, Y. 2004. High-resolution observation by double biprism holography. J.Appl. Phys. 96:6097-6102.

Hariharan, P. 2002. Basic of holography. Cambridge University Press.Johnston, S. F. 2006. Holographic Visions: A History of New Science. Oxford University Press.Johnston, S. F. 2009. Representing Holography in Museum Collec-tions. Illuminating Instruments. Smithsonian University Press, Washington DC. Ch 6: 97-116.

Jones R. & Wykes, C. 1989. Holographic and Speckle Inter-ferometry. Cambridge University Press.Leith, E.N. & Upatnieks, Y. 1962. Reconstructed wavefronts and communication theory. J. Opt. Soc. Am. 52: 1123-1130.

Lichte, H. 1991. Image plane off-axis electron holography of atomic structures. Advances in optical and electron microscopy. Academic, London. 12: 25-91.

Lichte, H., Geiger D., Linck, M. 2009. Off-axis electron holog-raphy in an aberration-corrected transmission electron microscope. Phil. Trans. R. Soc. A 367: 3773-3793.

Lichte, H., Formanek, P., Lenk, A., Linck, M., Matzeck, C., Lehmann, M., Simon, P. 2007. Electron Holography: Applications to Materials Questions. Annu. Rev. Mater. Res. 37: 539-588.

Lichte, H. & Lehmann, M. 2008. Electron holography–basics and applications. Reports on Progress in Physics. 71: 016102.Matteucci, G. 2006. Direct observation of the spontaneous magnitazation near the Curie point of a thin nickel film by electron holography. Phil. Mag. Lett. 86: 81-87.

Matteucci, G., Frost, B.G., Medina, F. 2004. Study of the field around magnetic force microscopy probes using electron holography. Ultramicroscopy. 99: 95-102.

Matteucci, G., Missiroli G.F., Pozzi, G. 2002. Electron holography of long-range electrostatic fields. Advances in Imaging and Electron Physics. Elsevier Science, USA. 122: 173-249.

Matteucci, G., Muccini, M., Hartmann, U. 1994. Flux measurements on ferromagnetic microprobes by electron holography. Physical Review B: 50: 6823-6828.

Moellensted, G., Dueker, H. 1956. Beobachtungen und messungen an biprisma-interferenzen mit electronenwellen. Z. Physik. 145: 377-397.

Mulvey, T. 1995. Gabor pessimistic 1942 view of electron microscopy and how he stumbled on the Nobel Prize. Advances in Imaging and Electron Physics (Academic Press). 91: 259-283.

Park, H. S., Yu, X., Aizawa, S., Tanigaki, T., Akashi, T., Takahashi, T., Matsuda, T., Kanazawa, N., Onose, Y., Shindo, D., Tonomura, A., and Tokura, Y. 2014. Observation of the magnetic flux and three-dimensional structure of skyrmion lattices by electron holography. Nature Nanotech. 9: 337-342.

Prager, F.D., Scaglia G. 1970. Brunelleschi: Studies of His Tech-nology and inventions. Cambridge, Mass.: M.I.T. Press.

Restrepo, J.F., García-Sucerquia, J. 2012. Automatic three-dimensional tracking of particles with high numerical aperture digital lensless holographic microscopy. Optics Letters. 37 (4): 752-754.Scherzer, O. 1936. Ueber einige Fehler von Electronenlinsen. Z. Physik. 101: 593-598

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2015 Journal of the Colombian Academy of Exact, Physical and Natural Sciences