A NOTE ON THE CAUCHY PROBLEM OF FUZZY DIFFERENTIAL EQUATIONS
PDF

How to Cite

González-Calderón, W., & Villamizar-Roa, E. J. (2023). A NOTE ON THE CAUCHY PROBLEM OF FUZZY DIFFERENTIAL EQUATIONS. Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 34(133), 541–565. https://doi.org/10.18257/raccefyn.34(133).2010.2480

Downloads

Download data is not yet available.

Métricas Alternativas


Dimensions

Abstract

In this paper we analyze the existence and uniqueness of solutions for a fuzzy initial value problem of kind x'(t) = f(t,x(t)), x(t0) = x0, where f: T x X --> X is a fuzzy-valued mapping, T is a time interval, X is a class of fuzzy sets, x0 X and to ∈ T. We consider x'(t) as a generalization of the Hukuhara derivative.

https://doi.org/10.18257/raccefyn.34(133).2010.2480

Keywords

Fuzzy-valued Mappings | Fuzzy Differentiability | Generalized Hukuhara Derivative | Fuzzy Differential Equations | Fuzzy Cauchy Problem
PDF

References

Bede B. & Gal S. Generalizations of the differentiability of fuzzy-number-valued functions with applications to fuzzy differential equations, Fuzzy Set and Systems 151 (2005) 581-599.

Chalco-Cano Y. & Román-Flores H. Comparison between some approaches to solve fuzzy differential equations, Fuzzy Set and Systems 160 (2009) 1517-1527.

Chalco-Cano Y. & Román-Flores H. On new solutions of fuzzy differential equations, Chaos Solitons & Fractals 38 (2008) 112-119.

Diamond P. Time-dependent differential inclusions, cocycle attractors and fuzzy differential equations, IEEE Trans. Fuzzy System 7 (1999) 734-740.

Diamond P. Stability and periodicity in fuzzy differential equations, IEEE Trans. Fuzzy System 8 (2000) 583-590.

Hukuhara M. Intégration des applications measurables dont la valeur est un compact convexe, Finacialaj Ekvacioj 10 (1967) 205-223.

Kaleva O. Fuzzy differential equations, Fuzzy Sets and Systems 24 (1987) 301-317.

Khastan, A. & Nieto, J. A boundary value problem for second-order fuzzy differential equations. Nonlinear Anal. 72 (2010) 3583-3593.

Negoita C. & Ralescu D. Applications of Fuzzy Sets to Systems Analysis, Wiley, New York, (1975) 12-31.

Nieto J. The Cauchy problem for continuous fuzzy differential equations, Fuzzy Set and Systems 102 (1999) 259-262.

Park J. & Han H. Existence and uniqueness theorem for solutions of fuzzy differential equations, Internat. J. Math. & Math. Sci. 22 (1999) 271-279.

Puri M. & Ralescu D. Differential of fuzzy functions, J. Math. Anal. Appl. 91 (1983) 552-558.

Puri M. & Ralescu D. Fuzzy random variables, J. Math. Anal. Appl. 114 (1986) 409-422.

Radstrom H. An embedding theorem for spaces of convex sets, Proc. Amer. Math. Soc. 3 (1952) 165-169.

Song S. & Wu C. Existence and uniqueness of solutions to Cauchy problem of fuzzy differential equations, Fuzzy Set and Systems 110 (2000) 55-67.

Seikkala S. On the fuzzy initial value problem, Fuzzy Sets and Systems 24 (1987) 319-330.

Xu, J., Liao, Z. & Nieto, J. A class of linear differential dynamical systems with fuzzy matrices. J. Math. Anal. Appl. 368 (2010) 54-68.

Zadeh L. Fuzzy sets, Information and Control 8 (1965), 338-353.

Zadeh L. Toward a generalized theory of uncertainty (G U T-an outline), Information Sciences 172 (2005) 1-40.

Zhang, D., Feng, W., Zhao, Y. & Qiu, J. Global existence of solutions for fuzzy second-order differential equations under generalized H-differentiability. Computers and Mathematics with Applications, In Press, doi: 10.1016/j.camwa.2010.06.038

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2023 https://creativecommons.org/licenses/by-nc-nd/4.0